基于resnext的自顶向下质谱中蛋白质形态表征的评分模型。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jiancheng Zhong, Yicheng Luo, Chen Yang, Maoqi Yuan, Shaokai Wang
{"title":"基于resnext的自顶向下质谱中蛋白质形态表征的评分模型。","authors":"Jiancheng Zhong, Yicheng Luo, Chen Yang, Maoqi Yuan, Shaokai Wang","doi":"10.1007/s12539-025-00701-x","DOIUrl":null,"url":null,"abstract":"<p><p>In top-down proteomics, the accurate identification and characterization of proteoform through mass spectrometry represents a critical objective. As a result, achieving accuracy in identification results is essential. Multiple primary structure alterations in proteins generate a diverse range of proteoforms, resulting in an exponential increase in potential proteoform. Moreover, the absence of a definitive reference set complicates the standardization of results. Therefore, enhancing the accuracy of proteoform characterization continues to be a significant challenge. We introduced a ResNeXt-based deep learning model, PrSMBooster, for rescoring proteoform spectrum matches (PrSM) during proteoform characterization. As an ensemble method, PrSMBooster integrates four machine learning models, logistic regression, XGBoost, decision tree, and support vector machine, as weak learners to obtain PrSM features. The basic and latent features of PrSM are subsequently input into the ResNeXt model for final rescoring. To verify the effect and accuracy of the PrSMBooster model in rescoring proteoform characterization, it was compared with the characterization algorithm TopPIC across 47 independent mass spectrometry datasets from various species. The experimental results indicate that in most mass spectrometry datasets, the number of PrSMs obtained after rescoring with PrSMBooster increases at a false discovery rate (FDR) of 1%. Further analysis of the experimental results confirmed that PrSMBooster improves the accuracy of PrSM scoring, generates more mass spectrometry characterization results, and demonstrates strong generalization ability.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResNeXt-Based Rescoring Model for Proteoform Characterization in Top-Down Mass Spectra.\",\"authors\":\"Jiancheng Zhong, Yicheng Luo, Chen Yang, Maoqi Yuan, Shaokai Wang\",\"doi\":\"10.1007/s12539-025-00701-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In top-down proteomics, the accurate identification and characterization of proteoform through mass spectrometry represents a critical objective. As a result, achieving accuracy in identification results is essential. Multiple primary structure alterations in proteins generate a diverse range of proteoforms, resulting in an exponential increase in potential proteoform. Moreover, the absence of a definitive reference set complicates the standardization of results. Therefore, enhancing the accuracy of proteoform characterization continues to be a significant challenge. We introduced a ResNeXt-based deep learning model, PrSMBooster, for rescoring proteoform spectrum matches (PrSM) during proteoform characterization. As an ensemble method, PrSMBooster integrates four machine learning models, logistic regression, XGBoost, decision tree, and support vector machine, as weak learners to obtain PrSM features. The basic and latent features of PrSM are subsequently input into the ResNeXt model for final rescoring. To verify the effect and accuracy of the PrSMBooster model in rescoring proteoform characterization, it was compared with the characterization algorithm TopPIC across 47 independent mass spectrometry datasets from various species. The experimental results indicate that in most mass spectrometry datasets, the number of PrSMs obtained after rescoring with PrSMBooster increases at a false discovery rate (FDR) of 1%. Further analysis of the experimental results confirmed that PrSMBooster improves the accuracy of PrSM scoring, generates more mass spectrometry characterization results, and demonstrates strong generalization ability.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00701-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00701-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在自上而下的蛋白质组学中,通过质谱法准确鉴定和表征蛋白质形态是一个关键的目标。因此,实现识别结果的准确性至关重要。蛋白质的多个一级结构改变产生多种多样的蛋白质形态,导致潜在的蛋白质形态呈指数级增长。此外,缺乏确定的参考集使结果的标准化复杂化。因此,提高异形表征的准确性仍然是一个重大的挑战。我们引入了一个基于resnext的深度学习模型PrSMBooster,用于在蛋白质形态表征过程中重新记录蛋白质形态谱匹配(PrSM)。PrSMBooster是一种集成方法,它将逻辑回归、XGBoost、决策树和支持向量机四种机器学习模型作为弱学习器来获取PrSM特征。PrSM的基本特征和潜在特征随后被输入到ResNeXt模型中进行最终评分。为了验证PrSMBooster模型在重新记录蛋白质形态特征方面的效果和准确性,将其与表征算法TopPIC在来自不同物种的47个独立质谱数据集上进行了比较。实验结果表明,在大多数质谱数据集中,使用PrSMBooster重新评分后获得的PrSMs数量以1%的错误发现率(FDR)增加。进一步分析实验结果证实,PrSMBooster提高了PrSM评分的准确性,生成了更多的质谱表征结果,具有较强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ResNeXt-Based Rescoring Model for Proteoform Characterization in Top-Down Mass Spectra.

In top-down proteomics, the accurate identification and characterization of proteoform through mass spectrometry represents a critical objective. As a result, achieving accuracy in identification results is essential. Multiple primary structure alterations in proteins generate a diverse range of proteoforms, resulting in an exponential increase in potential proteoform. Moreover, the absence of a definitive reference set complicates the standardization of results. Therefore, enhancing the accuracy of proteoform characterization continues to be a significant challenge. We introduced a ResNeXt-based deep learning model, PrSMBooster, for rescoring proteoform spectrum matches (PrSM) during proteoform characterization. As an ensemble method, PrSMBooster integrates four machine learning models, logistic regression, XGBoost, decision tree, and support vector machine, as weak learners to obtain PrSM features. The basic and latent features of PrSM are subsequently input into the ResNeXt model for final rescoring. To verify the effect and accuracy of the PrSMBooster model in rescoring proteoform characterization, it was compared with the characterization algorithm TopPIC across 47 independent mass spectrometry datasets from various species. The experimental results indicate that in most mass spectrometry datasets, the number of PrSMs obtained after rescoring with PrSMBooster increases at a false discovery rate (FDR) of 1%. Further analysis of the experimental results confirmed that PrSMBooster improves the accuracy of PrSM scoring, generates more mass spectrometry characterization results, and demonstrates strong generalization ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信