Jiancheng Zhong, Yicheng Luo, Chen Yang, Maoqi Yuan, Shaokai Wang
{"title":"基于resnext的自顶向下质谱中蛋白质形态表征的评分模型。","authors":"Jiancheng Zhong, Yicheng Luo, Chen Yang, Maoqi Yuan, Shaokai Wang","doi":"10.1007/s12539-025-00701-x","DOIUrl":null,"url":null,"abstract":"<p><p>In top-down proteomics, the accurate identification and characterization of proteoform through mass spectrometry represents a critical objective. As a result, achieving accuracy in identification results is essential. Multiple primary structure alterations in proteins generate a diverse range of proteoforms, resulting in an exponential increase in potential proteoform. Moreover, the absence of a definitive reference set complicates the standardization of results. Therefore, enhancing the accuracy of proteoform characterization continues to be a significant challenge. We introduced a ResNeXt-based deep learning model, PrSMBooster, for rescoring proteoform spectrum matches (PrSM) during proteoform characterization. As an ensemble method, PrSMBooster integrates four machine learning models, logistic regression, XGBoost, decision tree, and support vector machine, as weak learners to obtain PrSM features. The basic and latent features of PrSM are subsequently input into the ResNeXt model for final rescoring. To verify the effect and accuracy of the PrSMBooster model in rescoring proteoform characterization, it was compared with the characterization algorithm TopPIC across 47 independent mass spectrometry datasets from various species. The experimental results indicate that in most mass spectrometry datasets, the number of PrSMs obtained after rescoring with PrSMBooster increases at a false discovery rate (FDR) of 1%. Further analysis of the experimental results confirmed that PrSMBooster improves the accuracy of PrSM scoring, generates more mass spectrometry characterization results, and demonstrates strong generalization ability.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResNeXt-Based Rescoring Model for Proteoform Characterization in Top-Down Mass Spectra.\",\"authors\":\"Jiancheng Zhong, Yicheng Luo, Chen Yang, Maoqi Yuan, Shaokai Wang\",\"doi\":\"10.1007/s12539-025-00701-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In top-down proteomics, the accurate identification and characterization of proteoform through mass spectrometry represents a critical objective. As a result, achieving accuracy in identification results is essential. Multiple primary structure alterations in proteins generate a diverse range of proteoforms, resulting in an exponential increase in potential proteoform. Moreover, the absence of a definitive reference set complicates the standardization of results. Therefore, enhancing the accuracy of proteoform characterization continues to be a significant challenge. We introduced a ResNeXt-based deep learning model, PrSMBooster, for rescoring proteoform spectrum matches (PrSM) during proteoform characterization. As an ensemble method, PrSMBooster integrates four machine learning models, logistic regression, XGBoost, decision tree, and support vector machine, as weak learners to obtain PrSM features. The basic and latent features of PrSM are subsequently input into the ResNeXt model for final rescoring. To verify the effect and accuracy of the PrSMBooster model in rescoring proteoform characterization, it was compared with the characterization algorithm TopPIC across 47 independent mass spectrometry datasets from various species. The experimental results indicate that in most mass spectrometry datasets, the number of PrSMs obtained after rescoring with PrSMBooster increases at a false discovery rate (FDR) of 1%. Further analysis of the experimental results confirmed that PrSMBooster improves the accuracy of PrSM scoring, generates more mass spectrometry characterization results, and demonstrates strong generalization ability.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00701-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00701-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
ResNeXt-Based Rescoring Model for Proteoform Characterization in Top-Down Mass Spectra.
In top-down proteomics, the accurate identification and characterization of proteoform through mass spectrometry represents a critical objective. As a result, achieving accuracy in identification results is essential. Multiple primary structure alterations in proteins generate a diverse range of proteoforms, resulting in an exponential increase in potential proteoform. Moreover, the absence of a definitive reference set complicates the standardization of results. Therefore, enhancing the accuracy of proteoform characterization continues to be a significant challenge. We introduced a ResNeXt-based deep learning model, PrSMBooster, for rescoring proteoform spectrum matches (PrSM) during proteoform characterization. As an ensemble method, PrSMBooster integrates four machine learning models, logistic regression, XGBoost, decision tree, and support vector machine, as weak learners to obtain PrSM features. The basic and latent features of PrSM are subsequently input into the ResNeXt model for final rescoring. To verify the effect and accuracy of the PrSMBooster model in rescoring proteoform characterization, it was compared with the characterization algorithm TopPIC across 47 independent mass spectrometry datasets from various species. The experimental results indicate that in most mass spectrometry datasets, the number of PrSMs obtained after rescoring with PrSMBooster increases at a false discovery rate (FDR) of 1%. Further analysis of the experimental results confirmed that PrSMBooster improves the accuracy of PrSM scoring, generates more mass spectrometry characterization results, and demonstrates strong generalization ability.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.