{"title":"Identify Modules Associated with Immunotherapy Response from Mouse Tumor Profiles for Stratifying Cancer Patients.","authors":"Dechen Xu, Jie Li, Li Zhou, Jiahuan Jin","doi":"10.1007/s12539-025-00719-1","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical benefits in cancer treatment, but only a minority of patients exhibit favorable response, highlighting the importance of determining patients who will benefit from immunotherapy. Currently, patient datasets regarding immunotherapy response are scarce, while ample experiments can be performed on syngeneic mouse tumor models to generate valuable data. Therefore, how to effectively utilize mouse data to identify predictors of immunotherapy response and subsequently transfer relevant knowledge to predict human response to ICIs is a question worth studying. In this study, we propose a novel methodology to address this issue. Firstly, we identify gene modules associated with immunotherapy response from mouse tumor profiles based on cancer gene panels. Subsequently, these identified modules are employed to build prediction models for immunotherapy response based on mouse data. Furthermore, we transfer these models to predict ICIs responses of human cancer patients. Experimental results demonstrate that the gene modules identified from mouse data are reliable predictors of immunotherapy response. The mouse-based models built on these modules could be transferred to humans, effectively predicting drug responses and survival outcomes for cancer patients. Compared to conventional cancer biomarkers and existing prediction models based on mouse data, our method exhibits superior performance. These findings provide a valuable reference for further in-depth research on immunotherapy response prediction model based on mouse tumor profiles, with the potential for transfer applications in human cancer therapy.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00719-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical benefits in cancer treatment, but only a minority of patients exhibit favorable response, highlighting the importance of determining patients who will benefit from immunotherapy. Currently, patient datasets regarding immunotherapy response are scarce, while ample experiments can be performed on syngeneic mouse tumor models to generate valuable data. Therefore, how to effectively utilize mouse data to identify predictors of immunotherapy response and subsequently transfer relevant knowledge to predict human response to ICIs is a question worth studying. In this study, we propose a novel methodology to address this issue. Firstly, we identify gene modules associated with immunotherapy response from mouse tumor profiles based on cancer gene panels. Subsequently, these identified modules are employed to build prediction models for immunotherapy response based on mouse data. Furthermore, we transfer these models to predict ICIs responses of human cancer patients. Experimental results demonstrate that the gene modules identified from mouse data are reliable predictors of immunotherapy response. The mouse-based models built on these modules could be transferred to humans, effectively predicting drug responses and survival outcomes for cancer patients. Compared to conventional cancer biomarkers and existing prediction models based on mouse data, our method exhibits superior performance. These findings provide a valuable reference for further in-depth research on immunotherapy response prediction model based on mouse tumor profiles, with the potential for transfer applications in human cancer therapy.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.