Identify Modules Associated with Immunotherapy Response from Mouse Tumor Profiles for Stratifying Cancer Patients.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Dechen Xu, Jie Li, Li Zhou, Jiahuan Jin
{"title":"Identify Modules Associated with Immunotherapy Response from Mouse Tumor Profiles for Stratifying Cancer Patients.","authors":"Dechen Xu, Jie Li, Li Zhou, Jiahuan Jin","doi":"10.1007/s12539-025-00719-1","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical benefits in cancer treatment, but only a minority of patients exhibit favorable response, highlighting the importance of determining patients who will benefit from immunotherapy. Currently, patient datasets regarding immunotherapy response are scarce, while ample experiments can be performed on syngeneic mouse tumor models to generate valuable data. Therefore, how to effectively utilize mouse data to identify predictors of immunotherapy response and subsequently transfer relevant knowledge to predict human response to ICIs is a question worth studying. In this study, we propose a novel methodology to address this issue. Firstly, we identify gene modules associated with immunotherapy response from mouse tumor profiles based on cancer gene panels. Subsequently, these identified modules are employed to build prediction models for immunotherapy response based on mouse data. Furthermore, we transfer these models to predict ICIs responses of human cancer patients. Experimental results demonstrate that the gene modules identified from mouse data are reliable predictors of immunotherapy response. The mouse-based models built on these modules could be transferred to humans, effectively predicting drug responses and survival outcomes for cancer patients. Compared to conventional cancer biomarkers and existing prediction models based on mouse data, our method exhibits superior performance. These findings provide a valuable reference for further in-depth research on immunotherapy response prediction model based on mouse tumor profiles, with the potential for transfer applications in human cancer therapy.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00719-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical benefits in cancer treatment, but only a minority of patients exhibit favorable response, highlighting the importance of determining patients who will benefit from immunotherapy. Currently, patient datasets regarding immunotherapy response are scarce, while ample experiments can be performed on syngeneic mouse tumor models to generate valuable data. Therefore, how to effectively utilize mouse data to identify predictors of immunotherapy response and subsequently transfer relevant knowledge to predict human response to ICIs is a question worth studying. In this study, we propose a novel methodology to address this issue. Firstly, we identify gene modules associated with immunotherapy response from mouse tumor profiles based on cancer gene panels. Subsequently, these identified modules are employed to build prediction models for immunotherapy response based on mouse data. Furthermore, we transfer these models to predict ICIs responses of human cancer patients. Experimental results demonstrate that the gene modules identified from mouse data are reliable predictors of immunotherapy response. The mouse-based models built on these modules could be transferred to humans, effectively predicting drug responses and survival outcomes for cancer patients. Compared to conventional cancer biomarkers and existing prediction models based on mouse data, our method exhibits superior performance. These findings provide a valuable reference for further in-depth research on immunotherapy response prediction model based on mouse tumor profiles, with the potential for transfer applications in human cancer therapy.

从小鼠肿瘤谱中识别与免疫治疗反应相关的模块,用于分层癌症患者。
免疫检查点抑制剂(ICIs)在癌症治疗中显示出显著的临床益处,但只有少数患者表现出良好的反应,这突出了确定哪些患者将从免疫治疗中受益的重要性。目前,关于免疫治疗反应的患者数据集很少,而在同基因小鼠肿瘤模型上进行大量的实验可以产生有价值的数据。因此,如何有效地利用小鼠数据识别免疫治疗反应的预测因子,并将相关知识转移到预测人类对ICIs的反应是一个值得研究的问题。在这项研究中,我们提出了一种新的方法来解决这个问题。首先,我们从基于癌症基因面板的小鼠肿瘤谱中识别出与免疫治疗反应相关的基因模块。随后,利用这些识别出的模块构建基于小鼠数据的免疫治疗反应预测模型。此外,我们将这些模型转移到预测人类癌症患者的ICIs反应。实验结果表明,从小鼠数据中鉴定的基因模块是免疫治疗反应的可靠预测因子。建立在这些模块上的小鼠模型可以转移到人类身上,有效地预测癌症患者的药物反应和生存结果。与传统的癌症生物标志物和现有的基于小鼠数据的预测模型相比,我们的方法表现出优越的性能。这些发现为进一步深入研究基于小鼠肿瘤特征的免疫治疗反应预测模型提供了有价值的参考,具有在人类癌症治疗中转移应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信