基于改进模块的无监督多模态图像配准双流网络。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Lei Li, Liumin Zhu, Qifu Wang, Zhuoli Dong, Tianli Liao, Peng Li
{"title":"基于改进模块的无监督多模态图像配准双流网络。","authors":"Lei Li, Liumin Zhu, Qifu Wang, Zhuoli Dong, Tianli Liao, Peng Li","doi":"10.1007/s12539-025-00707-5","DOIUrl":null,"url":null,"abstract":"<p><p> Multi-modal medical image registration aims to align images from different modalities to establish spatial correspondences. Although deep learning-based methods have shown great potential, the lack of explicit reference relations makes unsupervised multi-modal registration still a challenging task. In this paper, we propose a novel unsupervised dual-stream multi-modal registration framework (DSMR), which combines a dual-stream registration network with a refinement module. Unlike existing methods that treat multi-modal registration as a uni-modal problem using a translation network, DSMR leverages the moving, fixed and translated images to generate two deformation fields. Specifically, we first utilize a translation network to convert a moving image into a translated image similar to a fixed image. Then, we employ the dual-stream registration network to compute two deformation fields respectively: the initial deformation field generated from the fixed image and the moving image, and the translated deformation field generated from the translated image and the fixed image. The translated deformation field acts as a pseudo-ground truth to refine the initial deformation field and mitigate issues such as artificial features introduced by translation. Finally, we use the refinement module to enhance the deformation field by integrating registration errors and contextual information. Extensive experimental results show that our DSMR achieves exceptional performance, demonstrating its strong generalization in learning the spatial relationships between images from unsupervised modalities. The source code of this work is available at https://github.com/raylihaut/DSMR .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSMR: Dual-Stream Networks with Refinement Module for Unsupervised Multi-modal Image Registration.\",\"authors\":\"Lei Li, Liumin Zhu, Qifu Wang, Zhuoli Dong, Tianli Liao, Peng Li\",\"doi\":\"10.1007/s12539-025-00707-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Multi-modal medical image registration aims to align images from different modalities to establish spatial correspondences. Although deep learning-based methods have shown great potential, the lack of explicit reference relations makes unsupervised multi-modal registration still a challenging task. In this paper, we propose a novel unsupervised dual-stream multi-modal registration framework (DSMR), which combines a dual-stream registration network with a refinement module. Unlike existing methods that treat multi-modal registration as a uni-modal problem using a translation network, DSMR leverages the moving, fixed and translated images to generate two deformation fields. Specifically, we first utilize a translation network to convert a moving image into a translated image similar to a fixed image. Then, we employ the dual-stream registration network to compute two deformation fields respectively: the initial deformation field generated from the fixed image and the moving image, and the translated deformation field generated from the translated image and the fixed image. The translated deformation field acts as a pseudo-ground truth to refine the initial deformation field and mitigate issues such as artificial features introduced by translation. Finally, we use the refinement module to enhance the deformation field by integrating registration errors and contextual information. Extensive experimental results show that our DSMR achieves exceptional performance, demonstrating its strong generalization in learning the spatial relationships between images from unsupervised modalities. The source code of this work is available at https://github.com/raylihaut/DSMR .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00707-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00707-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多模态医学图像配准的目的是将不同模态的图像进行对齐,建立空间对应关系。尽管基于深度学习的方法显示出巨大的潜力,但由于缺乏明确的参考关系,使得无监督多模态配准仍然是一项具有挑战性的任务。本文提出了一种新的无监督双流多模态配准框架(DSMR),该框架将双流配准网络与细化模块相结合。与使用平移网络将多模态配准视为单模态问题的现有方法不同,DSMR利用移动、固定和平移图像来生成两个变形场。具体来说,我们首先利用翻译网络将运动图像转换为类似于固定图像的翻译图像。然后,我们采用双流配准网络分别计算两个变形场:由固定图像和运动图像生成的初始变形场,以及由平移图像和固定图像生成的平移变形场。平移变形场作为伪地面真值,可以细化初始变形场,减轻平移引入的人为特征等问题。最后,我们利用精化模块整合配准误差和上下文信息来增强变形场。大量的实验结果表明,我们的DSMR取得了优异的性能,证明了它在从无监督模态中学习图像之间的空间关系方面具有很强的泛化能力。该工作的源代码可从https://github.com/raylihaut/DSMR获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSMR: Dual-Stream Networks with Refinement Module for Unsupervised Multi-modal Image Registration.

 Multi-modal medical image registration aims to align images from different modalities to establish spatial correspondences. Although deep learning-based methods have shown great potential, the lack of explicit reference relations makes unsupervised multi-modal registration still a challenging task. In this paper, we propose a novel unsupervised dual-stream multi-modal registration framework (DSMR), which combines a dual-stream registration network with a refinement module. Unlike existing methods that treat multi-modal registration as a uni-modal problem using a translation network, DSMR leverages the moving, fixed and translated images to generate two deformation fields. Specifically, we first utilize a translation network to convert a moving image into a translated image similar to a fixed image. Then, we employ the dual-stream registration network to compute two deformation fields respectively: the initial deformation field generated from the fixed image and the moving image, and the translated deformation field generated from the translated image and the fixed image. The translated deformation field acts as a pseudo-ground truth to refine the initial deformation field and mitigate issues such as artificial features introduced by translation. Finally, we use the refinement module to enhance the deformation field by integrating registration errors and contextual information. Extensive experimental results show that our DSMR achieves exceptional performance, demonstrating its strong generalization in learning the spatial relationships between images from unsupervised modalities. The source code of this work is available at https://github.com/raylihaut/DSMR .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信