{"title":"Pathway Enrichment-Based Unsupervised Learning Identifies Novel Subtypes of Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma.","authors":"Hongjing Ai, Rongfang Nie, Xiaosheng Wang","doi":"10.1007/s12539-025-00705-7","DOIUrl":null,"url":null,"abstract":"<p><p>Existing single-cell clustering methods are based on gene expressions that are susceptible to dropout events in single-cell RNA sequencing (scRNA-seq) data. To overcome this limitation, we proposed a pathway-based clustering method for single cells (scPathClus). scPathClus first transforms the single-cell gene expression matrix into a pathway enrichment matrix and generates its latent feature matrix. Based on the latent feature matrix, scPathClus clusters single cells using the method of community detection. Applying scPathClus to pancreatic ductal adenocarcinoma (PDAC) scRNA-seq datasets, we identified two types of cancer-associated fibroblasts (CAFs), termed csCAFs and gapCAFs, which highly expressed complement system and gap junction-related pathways, respectively. Spatial transcriptome analysis revealed that gapCAFs and csCAFs are located at cancer and non-cancer regions, respectively. Pseudotime analysis suggested a potential differentiation trajectory from csCAFs to gapCAFs. Bulk transcriptome analysis showed that gapCAFs-enriched tumors are more endowed with tumor-promoting characteristics and worse clinical outcomes, while csCAFs-enriched tumors confront stronger antitumor immune responses. Compared to established CAF subtyping methods, this method displays better prognostic relevance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00705-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Existing single-cell clustering methods are based on gene expressions that are susceptible to dropout events in single-cell RNA sequencing (scRNA-seq) data. To overcome this limitation, we proposed a pathway-based clustering method for single cells (scPathClus). scPathClus first transforms the single-cell gene expression matrix into a pathway enrichment matrix and generates its latent feature matrix. Based on the latent feature matrix, scPathClus clusters single cells using the method of community detection. Applying scPathClus to pancreatic ductal adenocarcinoma (PDAC) scRNA-seq datasets, we identified two types of cancer-associated fibroblasts (CAFs), termed csCAFs and gapCAFs, which highly expressed complement system and gap junction-related pathways, respectively. Spatial transcriptome analysis revealed that gapCAFs and csCAFs are located at cancer and non-cancer regions, respectively. Pseudotime analysis suggested a potential differentiation trajectory from csCAFs to gapCAFs. Bulk transcriptome analysis showed that gapCAFs-enriched tumors are more endowed with tumor-promoting characteristics and worse clinical outcomes, while csCAFs-enriched tumors confront stronger antitumor immune responses. Compared to established CAF subtyping methods, this method displays better prognostic relevance.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.