用于药物-靶标相互作用预测的可解释混合深度特征融合网络。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yuanyuan Zhang, Qihao Wang, Ci'ao Zhang, Baoming Feng, Junliang Shang, Li Zhang
{"title":"用于药物-靶标相互作用预测的可解释混合深度特征融合网络。","authors":"Yuanyuan Zhang, Qihao Wang, Ci'ao Zhang, Baoming Feng, Junliang Shang, Li Zhang","doi":"10.1007/s12539-025-00712-8","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional drug discovery is expensive and takes a long period. Drug-target interaction (DTI) prediction through computational methods significantly improves efficiency and reduces costs, holding substantial research value. Despite progress in existing prediction methods, two major challenges remain: first, most methods fail to effectively combine shallow and deep features of protein sequences, overlooking the synergistic effect of both; second, existing feature fusion techniques are relatively simple and struggle to fully capture the complexity and richness of fused features. We suggest an interpretable hybrid deep feature fusion network (IHDFN) as a solution to these problems. In the hybrid deep feature extraction module for protein sequences, shallow and deep features of protein sequences are extracted through two distinct views respectively, which capture multi-level information of proteins comprehensively. To further enhance the feature fusion effect, we introduce the StarNet fusion model in this module, enabling efficient fusion of shallow and deep features and enriching feature representation. To further improve the representation power of drug characteristics and the stability of the model, we use a graph convolutional network (GCN) in the drug feature extraction section in conjunction with residual connections and layer normalization. Furthermore, by integrating multimodal features from drugs and proteins utilizing an attention mechanism in the heterogeneous feature fusion module, we increase the complexity of features and achieve interpretability in predictions by attention focusing. Finally, we experimented on three datasets, and the findings indicate that IHDFN has exceptional performance and robustness compared to other cutting-edge techniques, underscoring its great promise and usefulness in DTI tasks. The code for this study is available on GitHub at https://github.com/wangqhfff/IHDFN.git .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IHDFN-DTI: Interpretable Hybrid Deep Feature Fusion Network for Drug-Target Interaction Prediction.\",\"authors\":\"Yuanyuan Zhang, Qihao Wang, Ci'ao Zhang, Baoming Feng, Junliang Shang, Li Zhang\",\"doi\":\"10.1007/s12539-025-00712-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional drug discovery is expensive and takes a long period. Drug-target interaction (DTI) prediction through computational methods significantly improves efficiency and reduces costs, holding substantial research value. Despite progress in existing prediction methods, two major challenges remain: first, most methods fail to effectively combine shallow and deep features of protein sequences, overlooking the synergistic effect of both; second, existing feature fusion techniques are relatively simple and struggle to fully capture the complexity and richness of fused features. We suggest an interpretable hybrid deep feature fusion network (IHDFN) as a solution to these problems. In the hybrid deep feature extraction module for protein sequences, shallow and deep features of protein sequences are extracted through two distinct views respectively, which capture multi-level information of proteins comprehensively. To further enhance the feature fusion effect, we introduce the StarNet fusion model in this module, enabling efficient fusion of shallow and deep features and enriching feature representation. To further improve the representation power of drug characteristics and the stability of the model, we use a graph convolutional network (GCN) in the drug feature extraction section in conjunction with residual connections and layer normalization. Furthermore, by integrating multimodal features from drugs and proteins utilizing an attention mechanism in the heterogeneous feature fusion module, we increase the complexity of features and achieve interpretability in predictions by attention focusing. Finally, we experimented on three datasets, and the findings indicate that IHDFN has exceptional performance and robustness compared to other cutting-edge techniques, underscoring its great promise and usefulness in DTI tasks. The code for this study is available on GitHub at https://github.com/wangqhfff/IHDFN.git .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00712-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00712-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统的药物研发成本高,耗时长。通过计算方法预测药物-靶标相互作用(DTI)可显著提高效率,降低成本,具有重要的研究价值。尽管现有的预测方法取得了一定的进展,但仍然存在两大挑战:一是大多数方法未能有效地结合蛋白质序列的浅层和深层特征,忽略了两者的协同效应;其次,现有的特征融合技术相对简单,难以充分捕捉融合特征的复杂性和丰富性。我们提出了一种可解释的混合深度特征融合网络(IHDFN)作为解决这些问题的方法。在蛋白质序列混合深度特征提取模块中,分别通过两种不同的视角提取蛋白质序列的浅特征和深特征,全面捕获蛋白质的多层次信息。为了进一步增强特征融合效果,本模块引入了StarNet融合模型,实现了浅层和深层特征的高效融合,丰富了特征表示。为了进一步提高药物特征的表示能力和模型的稳定性,我们在药物特征提取部分使用了图卷积网络(GCN),并结合残差连接和层归一化。此外,通过在异构特征融合模块中利用注意机制整合来自药物和蛋白质的多模态特征,我们增加了特征的复杂性,并通过注意聚焦实现了预测的可解释性。最后,我们在三个数据集上进行了实验,结果表明,与其他尖端技术相比,IHDFN具有卓越的性能和鲁棒性,强调了它在DTI任务中的巨大前景和实用性。这项研究的代码可以在GitHub上找到https://github.com/wangqhfff/IHDFN.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IHDFN-DTI: Interpretable Hybrid Deep Feature Fusion Network for Drug-Target Interaction Prediction.

Conventional drug discovery is expensive and takes a long period. Drug-target interaction (DTI) prediction through computational methods significantly improves efficiency and reduces costs, holding substantial research value. Despite progress in existing prediction methods, two major challenges remain: first, most methods fail to effectively combine shallow and deep features of protein sequences, overlooking the synergistic effect of both; second, existing feature fusion techniques are relatively simple and struggle to fully capture the complexity and richness of fused features. We suggest an interpretable hybrid deep feature fusion network (IHDFN) as a solution to these problems. In the hybrid deep feature extraction module for protein sequences, shallow and deep features of protein sequences are extracted through two distinct views respectively, which capture multi-level information of proteins comprehensively. To further enhance the feature fusion effect, we introduce the StarNet fusion model in this module, enabling efficient fusion of shallow and deep features and enriching feature representation. To further improve the representation power of drug characteristics and the stability of the model, we use a graph convolutional network (GCN) in the drug feature extraction section in conjunction with residual connections and layer normalization. Furthermore, by integrating multimodal features from drugs and proteins utilizing an attention mechanism in the heterogeneous feature fusion module, we increase the complexity of features and achieve interpretability in predictions by attention focusing. Finally, we experimented on three datasets, and the findings indicate that IHDFN has exceptional performance and robustness compared to other cutting-edge techniques, underscoring its great promise and usefulness in DTI tasks. The code for this study is available on GitHub at https://github.com/wangqhfff/IHDFN.git .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信