{"title":"Predicting CircRNA-Disease Associations Based on Heterogeneous Graph Neural Network and Knowledge Graph Attribute Mining Attention.","authors":"Wei Lan, Cong Peng, Hongyu Zhang, Chunling Li, Qingfeng Chen, Xin Xiao, Zhiqiang Wang","doi":"10.1007/s12539-025-00706-6","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of associations between circular RNAs (circRNAs) and diseases contributes to a deeper understanding of the pathogenesis of diseases. Many computational methods have been proposed for circRNA-disease associations identification. However, these methods still exhibit some limitations such as ignoring the effect of noise. In this paper, we proposed a new knowledge graph attribute mining attention network (KAATCDA) to predict circRNA-disease associations based on knowledge graph attribute network (KGA) and attribute mining attention network (AMA). Firstly, KGA is used to learn the feature representation of diseases. Then, the features of circRNAs are obtained using AMA, which are similar to disease feature representations. Finally, the scores of circRNA-disease associations are predicted based on circRNA feature representation and disease feature representation. Experiments of five-fold cross-validation on two datasets demonstrate that KAATCDA outperforms other state-of-the-art methods. In addition, the case study shows our method can effectively predict unknown circRNA-disease associations.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00706-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of associations between circular RNAs (circRNAs) and diseases contributes to a deeper understanding of the pathogenesis of diseases. Many computational methods have been proposed for circRNA-disease associations identification. However, these methods still exhibit some limitations such as ignoring the effect of noise. In this paper, we proposed a new knowledge graph attribute mining attention network (KAATCDA) to predict circRNA-disease associations based on knowledge graph attribute network (KGA) and attribute mining attention network (AMA). Firstly, KGA is used to learn the feature representation of diseases. Then, the features of circRNAs are obtained using AMA, which are similar to disease feature representations. Finally, the scores of circRNA-disease associations are predicted based on circRNA feature representation and disease feature representation. Experiments of five-fold cross-validation on two datasets demonstrate that KAATCDA outperforms other state-of-the-art methods. In addition, the case study shows our method can effectively predict unknown circRNA-disease associations.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.