Predicting CircRNA-Disease Associations Based on Heterogeneous Graph Neural Network and Knowledge Graph Attribute Mining Attention.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Wei Lan, Cong Peng, Hongyu Zhang, Chunling Li, Qingfeng Chen, Xin Xiao, Zhiqiang Wang
{"title":"Predicting CircRNA-Disease Associations Based on Heterogeneous Graph Neural Network and Knowledge Graph Attribute Mining Attention.","authors":"Wei Lan, Cong Peng, Hongyu Zhang, Chunling Li, Qingfeng Chen, Xin Xiao, Zhiqiang Wang","doi":"10.1007/s12539-025-00706-6","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of associations between circular RNAs (circRNAs) and diseases contributes to a deeper understanding of the pathogenesis of diseases. Many computational methods have been proposed for circRNA-disease associations identification. However, these methods still exhibit some limitations such as ignoring the effect of noise. In this paper, we proposed a new knowledge graph attribute mining attention network (KAATCDA) to predict circRNA-disease associations based on knowledge graph attribute network (KGA) and attribute mining attention network (AMA). Firstly, KGA is used to learn the feature representation of diseases. Then, the features of circRNAs are obtained using AMA, which are similar to disease feature representations. Finally, the scores of circRNA-disease associations are predicted based on circRNA feature representation and disease feature representation. Experiments of five-fold cross-validation on two datasets demonstrate that KAATCDA outperforms other state-of-the-art methods. In addition, the case study shows our method can effectively predict unknown circRNA-disease associations.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00706-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of associations between circular RNAs (circRNAs) and diseases contributes to a deeper understanding of the pathogenesis of diseases. Many computational methods have been proposed for circRNA-disease associations identification. However, these methods still exhibit some limitations such as ignoring the effect of noise. In this paper, we proposed a new knowledge graph attribute mining attention network (KAATCDA) to predict circRNA-disease associations based on knowledge graph attribute network (KGA) and attribute mining attention network (AMA). Firstly, KGA is used to learn the feature representation of diseases. Then, the features of circRNAs are obtained using AMA, which are similar to disease feature representations. Finally, the scores of circRNA-disease associations are predicted based on circRNA feature representation and disease feature representation. Experiments of five-fold cross-validation on two datasets demonstrate that KAATCDA outperforms other state-of-the-art methods. In addition, the case study shows our method can effectively predict unknown circRNA-disease associations.

基于异构图神经网络和知识图属性挖掘注意力的circrna -疾病关联预测。
环状rna (circRNAs)与疾病之间的关联的探索有助于更深入地了解疾病的发病机制。许多计算方法已被提出用于circrna -疾病关联鉴定。然而,这些方法仍然存在一些局限性,例如忽略了噪声的影响。本文在知识图属性网络(KGA)和属性挖掘关注网络(AMA)的基础上,提出了一种新的环状rna -疾病关联预测知识图属性挖掘关注网络(KAATCDA)。首先,利用KGA学习疾病的特征表示。然后,使用AMA获得circrna的特征,这类似于疾病特征表示。最后,基于circRNA特征表征和疾病特征表征预测circRNA-疾病关联评分。在两个数据集上进行的五重交叉验证实验表明,KAATCDA优于其他最先进的方法。此外,案例研究表明,我们的方法可以有效地预测未知的circrna -疾病关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信