{"title":"ScAGCN: Graph Convolutional Network with Adaptive Aggregation Mechanism for scRNA-seq Data Dimensionality Reduction.","authors":"Xiaoshu Zhu, Liquan Zhao, Fei Teng, Shuang Meng, Miao Xie","doi":"10.1007/s12539-025-00702-w","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of single-cell RNA-sequencing (scRNA-seq) technology, scRNA-seq data analysis suffers huge challenges due to large scale, high dimensionality, high noise, and high sparsity. To achieve accurately embedded representation in the large-scale scRNA-seq data, we try to design a novel graph convolutional network with an adaptive aggregation mechanism. Based on the assumption that the aggregation order of different cells would be different, a graph convolutional network with an adaptive aggregation-based dimensionality reduction algorithm for scRNA-seq data is developed, named scAGCN. In scAGCN, a preprocessing consisting of quality control and feature selection is implemented. Then, an approximate nearest neighbor graph is rapidly constructed. Finally, a graph convolutional network with an adaptive aggregation mechanism is constructed, in which the neighborhood selection strategy based on node distribution and similarity boxplots is designed, and the aggregation function is optimized by defining a similarity measurement between neighborhood nodes and the central node. The results show that scAGCN outperforms existing dimensionality reduction methods on 15 real scRNA-seq datasets, especially in 10 large-scale scRNA-seq datasets.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00702-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of single-cell RNA-sequencing (scRNA-seq) technology, scRNA-seq data analysis suffers huge challenges due to large scale, high dimensionality, high noise, and high sparsity. To achieve accurately embedded representation in the large-scale scRNA-seq data, we try to design a novel graph convolutional network with an adaptive aggregation mechanism. Based on the assumption that the aggregation order of different cells would be different, a graph convolutional network with an adaptive aggregation-based dimensionality reduction algorithm for scRNA-seq data is developed, named scAGCN. In scAGCN, a preprocessing consisting of quality control and feature selection is implemented. Then, an approximate nearest neighbor graph is rapidly constructed. Finally, a graph convolutional network with an adaptive aggregation mechanism is constructed, in which the neighborhood selection strategy based on node distribution and similarity boxplots is designed, and the aggregation function is optimized by defining a similarity measurement between neighborhood nodes and the central node. The results show that scAGCN outperforms existing dimensionality reduction methods on 15 real scRNA-seq datasets, especially in 10 large-scale scRNA-seq datasets.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.