ScAGCN: Graph Convolutional Network with Adaptive Aggregation Mechanism for scRNA-seq Data Dimensionality Reduction.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiaoshu Zhu, Liquan Zhao, Fei Teng, Shuang Meng, Miao Xie
{"title":"ScAGCN: Graph Convolutional Network with Adaptive Aggregation Mechanism for scRNA-seq Data Dimensionality Reduction.","authors":"Xiaoshu Zhu, Liquan Zhao, Fei Teng, Shuang Meng, Miao Xie","doi":"10.1007/s12539-025-00702-w","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of single-cell RNA-sequencing (scRNA-seq) technology, scRNA-seq data analysis suffers huge challenges due to large scale, high dimensionality, high noise, and high sparsity. To achieve accurately embedded representation in the large-scale scRNA-seq data, we try to design a novel graph convolutional network with an adaptive aggregation mechanism. Based on the assumption that the aggregation order of different cells would be different, a graph convolutional network with an adaptive aggregation-based dimensionality reduction algorithm for scRNA-seq data is developed, named scAGCN. In scAGCN, a preprocessing consisting of quality control and feature selection is implemented. Then, an approximate nearest neighbor graph is rapidly constructed. Finally, a graph convolutional network with an adaptive aggregation mechanism is constructed, in which the neighborhood selection strategy based on node distribution and similarity boxplots is designed, and the aggregation function is optimized by defining a similarity measurement between neighborhood nodes and the central node. The results show that scAGCN outperforms existing dimensionality reduction methods on 15 real scRNA-seq datasets, especially in 10 large-scale scRNA-seq datasets.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00702-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of single-cell RNA-sequencing (scRNA-seq) technology, scRNA-seq data analysis suffers huge challenges due to large scale, high dimensionality, high noise, and high sparsity. To achieve accurately embedded representation in the large-scale scRNA-seq data, we try to design a novel graph convolutional network with an adaptive aggregation mechanism. Based on the assumption that the aggregation order of different cells would be different, a graph convolutional network with an adaptive aggregation-based dimensionality reduction algorithm for scRNA-seq data is developed, named scAGCN. In scAGCN, a preprocessing consisting of quality control and feature selection is implemented. Then, an approximate nearest neighbor graph is rapidly constructed. Finally, a graph convolutional network with an adaptive aggregation mechanism is constructed, in which the neighborhood selection strategy based on node distribution and similarity boxplots is designed, and the aggregation function is optimized by defining a similarity measurement between neighborhood nodes and the central node. The results show that scAGCN outperforms existing dimensionality reduction methods on 15 real scRNA-seq datasets, especially in 10 large-scale scRNA-seq datasets.

ScAGCN:基于自适应聚合机制的scRNA-seq数据降维图卷积网络。
随着单细胞rna测序(scRNA-seq)技术的发展,scRNA-seq数据分析因其大规模、高维数、高噪声和高稀疏性而面临巨大挑战。为了在大规模scRNA-seq数据中实现准确的嵌入表示,我们尝试设计一种具有自适应聚合机制的新型图卷积网络。基于不同细胞聚集顺序不同的假设,提出了一种基于自适应聚集的scRNA-seq数据降维算法的图卷积网络,命名为scAGCN。在scAGCN中,实现了由质量控制和特征选择组成的预处理。然后,快速构造近似最近邻图。最后,构建了具有自适应聚合机制的图卷积网络,设计了基于节点分布和相似箱线图的邻域选择策略,并通过定义邻域节点与中心节点之间的相似度度量来优化聚合函数。结果表明,scAGCN在15个真实scRNA-seq数据集上优于现有的降维方法,特别是在10个大规模scRNA-seq数据集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信