Lisha Pang, Peng He, Yue Han, Hao Cui, Peng Feng, Chi Zhang, Pan Huang, Sukun Tian
{"title":"Semantic Consistency Network with Edge Learner and Connectivity Enhancer for Cervical Tumor Segmentation from Histopathology Images.","authors":"Lisha Pang, Peng He, Yue Han, Hao Cui, Peng Feng, Chi Zhang, Pan Huang, Sukun Tian","doi":"10.1007/s12539-025-00691-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate tumor grading and regional identification of cervical tumors are important for diagnosis and prognosis. Traditional manual microscopy methods suffer from time-consuming, labor-intensive, and subjective bias problems, so tumor segmentation methods based on deep learning are gradually becoming a hotspot in current research. Cervical tumors have diverse morphologies, which leads to low similarity between the mask edge and ground-truth edge of existing semantic segmentation models. Moreover, the texture and geometric arrangement features of normal tissues and tumors are highly similar, which causes poor pixel connectivity in the mask of the segmentation model. To this end, we propose an end-to-end semantic consistency network with the edge learner and the connectivity enhancer, i.e., ERNet. First, the edge learner consists of a stacked shallow convolutional neural network, so it can effectively enhance the ability of ERNet to learn and represent polymorphic tumor edges. Second, the connectivity enhancer learns detailed information and contextual information of tumor images, so it can enhance the pixel connectivity of the masks. Finally, edge features and pixel-level features are adaptively coupled, and the segmentation results are additionally optimized by the tumor classification task as a whole. The results show that, compared with those of other state-of-the-art segmentation models, the structural similarity and the mean intersection over union of ERNet are improved to 88.17% and 83.22%, respectively, which reflects the excellent edge similarity and pixel connectivity of the proposed model. Finally, we conduct a generalization experiment on laryngeal tumor images. Therefore, the ERNet network has good clinical popularization and practical value.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00691-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate tumor grading and regional identification of cervical tumors are important for diagnosis and prognosis. Traditional manual microscopy methods suffer from time-consuming, labor-intensive, and subjective bias problems, so tumor segmentation methods based on deep learning are gradually becoming a hotspot in current research. Cervical tumors have diverse morphologies, which leads to low similarity between the mask edge and ground-truth edge of existing semantic segmentation models. Moreover, the texture and geometric arrangement features of normal tissues and tumors are highly similar, which causes poor pixel connectivity in the mask of the segmentation model. To this end, we propose an end-to-end semantic consistency network with the edge learner and the connectivity enhancer, i.e., ERNet. First, the edge learner consists of a stacked shallow convolutional neural network, so it can effectively enhance the ability of ERNet to learn and represent polymorphic tumor edges. Second, the connectivity enhancer learns detailed information and contextual information of tumor images, so it can enhance the pixel connectivity of the masks. Finally, edge features and pixel-level features are adaptively coupled, and the segmentation results are additionally optimized by the tumor classification task as a whole. The results show that, compared with those of other state-of-the-art segmentation models, the structural similarity and the mean intersection over union of ERNet are improved to 88.17% and 83.22%, respectively, which reflects the excellent edge similarity and pixel connectivity of the proposed model. Finally, we conduct a generalization experiment on laryngeal tumor images. Therefore, the ERNet network has good clinical popularization and practical value.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.