{"title":"IEEE Electron Device Letters Information for Authors","authors":"","doi":"10.1109/LED.2025.3540236","DOIUrl":"https://doi.org/10.1109/LED.2025.3540236","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"519-519"},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10906356","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wide Band Gap Semiconductors for Automotive Applications","authors":"","doi":"10.1109/LED.2025.3540240","DOIUrl":"https://doi.org/10.1109/LED.2025.3540240","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"521-522"},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10906362","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanpeng Wu;Yixin Xiao;Kai Sun;Jianyang Xiao;Bowen Tian;Ding Wang;Danhao Wang;Kelotchi S Figueroa;Alexander McFarland;Parag B. Deotare;Zetian Mi
{"title":"Corrections to “A Tunneling Light-Emitting Device With Ultra-Narrow Linewidth Emission at Room-Temperature”","authors":"Yuanpeng Wu;Yixin Xiao;Kai Sun;Jianyang Xiao;Bowen Tian;Ding Wang;Danhao Wang;Kelotchi S Figueroa;Alexander McFarland;Parag B. Deotare;Zetian Mi","doi":"10.1109/LED.2025.3537721","DOIUrl":"https://doi.org/10.1109/LED.2025.3537721","url":null,"abstract":"In the above article <xref>[1]</xref>, there is a correction to author information and funding information. The correct information is found in the byline and the first footnote.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"516-516"},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10906359","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications","authors":"","doi":"10.1109/LED.2025.3540242","DOIUrl":"https://doi.org/10.1109/LED.2025.3540242","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"523-524"},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10906360","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Nominations for Editor-in-Chief IEEE Transactions on Semiconductor Manufacturing","authors":"","doi":"10.1109/LED.2025.3540226","DOIUrl":"https://doi.org/10.1109/LED.2025.3540226","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"520-520"},"PeriodicalIF":4.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10906358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measuring Direct Flexoelectricity at the Nanoscale","authors":"Daniel Moreno-Garcia;Luis Guillermo Villanueva","doi":"10.1109/LED.2025.3541892","DOIUrl":"https://doi.org/10.1109/LED.2025.3541892","url":null,"abstract":"Flexoelectricity is a property of all dielectric materials, where inhomogeneous strain induces electrical polarization. This effect becomes particularly prominent at the nanoscale where larger strain gradients can be obtained. While flexoelectric charges have been measured in mm-scale systems, direct measurements in nanoscale-thickness materials have not yet been achieved. Given that one of the most prominent applications of flexoelectricity is in nano-electro-mechanical systems (NEMS), confirming the presence and magnitude of the effect at these scales is essential. This study presents the first-ever measurements of flexoelectric-generated currents (direct effect) in nanoscale-thickness materials, using cantilevers with a 50 nm hafnium oxide layer. We confirm that the estimated flexoelectric coefficient from said measurements aligns with the values obtained from complementary experiments using the flexoelectric inverse effect. Additionally, by changing the cantilever geometry (modifying the width of the cantilevers), we demonstrate a 40% increase in the effective flexoelectric coefficient, explained by the interplay of different flexoelectric tensor components. These findings not only validate the presence of flexoelectric effects at the nanoscale but also open the possibility for full flexoelectric transduction of the motion in NEMS/MEMS devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"648-651"},"PeriodicalIF":4.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low Capacitance and Fast Response SCR for High-Speed I/O ESD Protections","authors":"Ruibo Chen;Feibo Du;Lu Li;Zhiwei Liu;Zhangming Zhu","doi":"10.1109/LED.2025.3542844","DOIUrl":"https://doi.org/10.1109/LED.2025.3542844","url":null,"abstract":"A floating-base N-type transistor triggered silicon-controlled rectifier (FBNTSCR) device is developed for high-speed I/O electrostatic discharge (ESD) protection. The device, constructed by embedding a floating-base N-type transistor as the trigger element replacing the P-well tie in a standard SCR, enables the embedded bipolar to be avalanched at the collector-emitter breakdown voltage, providing a lower trigger voltage than the conventional LVTSCR. Furthermore, a lower parasitic capacitance is achieved by mitigating the capacitance associated with the N-well/P-well junction. The proposed design also has a shorter inherent SCR path, resulting in lower on-resistance, higher failure current (<inline-formula> <tex-math>$l_{{t}{2}}$ </tex-math></inline-formula>) and lower overshoot voltage as well as faster turn on speed, all of which benefit the CDM ESD protection performance. Measurement results show the FBNTSCR has ~40.8% reduced trigger voltage, ~68.9% reduced parasitic capacitance and ~16.7% enhanced <inline-formula> <tex-math>$l_{{t}{2}}$ </tex-math></inline-formula> compared to the conventional LVTSCR.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"632-635"},"PeriodicalIF":4.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Resistive Switching in Au/MoS₂/Au Using Reactive Molecular Dynamics and ab-initio Quantum Transport Calculations","authors":"Ashutosh Krishna Amaram;Saurabh Kharwar;Tarun Kumar Agarwal","doi":"10.1109/LED.2025.3542957","DOIUrl":"https://doi.org/10.1109/LED.2025.3542957","url":null,"abstract":"In this work, we investigate the underlying physical mechanism for electric-field induced resistive switching in Au/MoS2/Au based memristive devices by combining reactive Molecular Dynamics (MD) and ab-initio quantum transport calculations. Using MD with Au/Mo/S ReaxFF potential, we observe the formation of realistic conductive filament consisting of gold atoms through monolayer MoS2 layer when sufficient electric field is applied. We furthermore instigate the rupture of the gold atom filament when a sufficiently large electric field is applied in the opposite direction. To calculate the conductance of the obtained structures and identify the High Resistance (HR) and Low Resistance (LR) states, we employ the ab-initio electron transport calculations by importing the atomic structures from MD calculations. For single-defect MoS2 memristors, the obtained LRS, HRS current densities are in order of <inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula> A/cm2 which agrees reasonably well with the reported experiments.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"656-659"},"PeriodicalIF":4.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}