Enhancement of Energy Storage and Efficiency in Antiferroelectric Hf᙮Zr᙮₋₁O₂ Supercapacitors Through Tailored Phase Engineering by Oxygen Vacancy

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhiquan He;Yu Bai;Guanlin Li;Xuanxi Liu;Xiuyi Wang;Chuhao Yao;Pengfei Jiang;Tiancheng Gong;Wei Wei;Xiao Long;Xinzhong Zhu;Yuan Qiu;Heng Ye;Yuan Wang;Qing Luo
{"title":"Enhancement of Energy Storage and Efficiency in Antiferroelectric Hf᙮Zr᙮₋₁O₂ Supercapacitors Through Tailored Phase Engineering by Oxygen Vacancy","authors":"Zhiquan He;Yu Bai;Guanlin Li;Xuanxi Liu;Xiuyi Wang;Chuhao Yao;Pengfei Jiang;Tiancheng Gong;Wei Wei;Xiao Long;Xinzhong Zhu;Yuan Qiu;Heng Ye;Yuan Wang;Qing Luo","doi":"10.1109/LED.2025.3599694","DOIUrl":null,"url":null,"abstract":"In this letter, the antiferroelectric (AFE) performance of <inline-formula> <tex-math>${\\mathrm {Hf}}_{\\mathbf {x}}$ </tex-math></inline-formula><inline-formula> <tex-math>${\\mathrm {Zr}}_{\\mathbf {{1}-}\\mathbf {x}}$ </tex-math></inline-formula><inline-formula> <tex-math>${\\mathrm {O}}_{\\mathbf {{2}}}$ </tex-math></inline-formula> (HZO) film is significantly improved by regulating its oxygen vacancy (V<inline-formula> <tex-math>${}_{\\!\\!\\mathbf {O}}$ </tex-math></inline-formula>). The gas with different <inline-formula> <tex-math>${\\mathrm {O}}_{\\mathbf {{2}}}$ </tex-math></inline-formula> flow is used in the HZO films sputter process. Introducing appropriate <inline-formula> <tex-math>${\\mathrm {O}}_{\\mathbf {{2}}}$ </tex-math></inline-formula> flow enhances both energy storage density (ESD) and efficiency (<inline-formula> <tex-math>$\\eta $ </tex-math></inline-formula>) of the AFE HZO energy storage capacitors (ESCs). X-ray diffraction (XRD) and capacitance–electric (C–E) measurements demonstrate that the t-phase/o-phase ratio in HZO films was adjusted by regulating the V<inline-formula> <tex-math>${}_{\\!\\!\\mathbf {O}}$ </tex-math></inline-formula> concentration to promote t-phase crystallization. The optimal crystallization of the t-phase in HZO films, achieved with 8.0% V<inline-formula> <tex-math>${}_{\\!\\!\\mathbf {O}}$ </tex-math></inline-formula> and 0.82 Zr concentration, results in an ESD of ~86.3 J/cm3 and an efficiency of ~74%. Moreover, we attained exceptional durability, surpassing <inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula> cycles while maintaining 98% of the initial ESD. The results obtained herein provide a novel and effective method to achieve high-performance AFE HZO ESCs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 10","pages":"1893-1896"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11127050/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, the antiferroelectric (AFE) performance of ${\mathrm {Hf}}_{\mathbf {x}}$ ${\mathrm {Zr}}_{\mathbf {{1}-}\mathbf {x}}$ ${\mathrm {O}}_{\mathbf {{2}}}$ (HZO) film is significantly improved by regulating its oxygen vacancy (V ${}_{\!\!\mathbf {O}}$ ). The gas with different ${\mathrm {O}}_{\mathbf {{2}}}$ flow is used in the HZO films sputter process. Introducing appropriate ${\mathrm {O}}_{\mathbf {{2}}}$ flow enhances both energy storage density (ESD) and efficiency ( $\eta $ ) of the AFE HZO energy storage capacitors (ESCs). X-ray diffraction (XRD) and capacitance–electric (C–E) measurements demonstrate that the t-phase/o-phase ratio in HZO films was adjusted by regulating the V ${}_{\!\!\mathbf {O}}$ concentration to promote t-phase crystallization. The optimal crystallization of the t-phase in HZO films, achieved with 8.0% V ${}_{\!\!\mathbf {O}}$ and 0.82 Zr concentration, results in an ESD of ~86.3 J/cm3 and an efficiency of ~74%. Moreover, we attained exceptional durability, surpassing $10^{{9}}$ cycles while maintaining 98% of the initial ESD. The results obtained herein provide a novel and effective method to achieve high-performance AFE HZO ESCs.
氧空位定制相位工程提高反铁电Hf᙮Zr᙮₁O₂超级电容器的储能和效率
在这封信中,${\ mathm {Hf}} {\mathbf {x}}$ ${\ mathm {Zr}} {\mathbf {{1}-}\mathbf {x}}$ ${\ mathbf {O}} {\mathbf {{2}}}$ (HZO)薄膜的反铁电(AFE)性能通过调节氧空位(V ${}_{\ \mathbf {\!\!\mathbf{0}}$)。在HZO薄膜溅射过程中使用不同${\ mathm {O}}_{\mathbf{{2}}}$流量的气体。引入适当的${\ mathm {O}}_{\mathbf{{2}}}$流可以提高AFE HZO储能电容器的储能密度(ESD)和效率($\eta $)。x射线衍射(XRD)和电容量(C-E)测试表明,HZO薄膜中的t相/o相比可以通过调节V ${}_{\!\!\mathbf {O}}$浓度促进t相结晶。当V = 8.0%时,HZO薄膜中t相的结晶效果最佳。\mathbf {O}}$, Zr浓度为0.82时,静电放电为~86.3 J/cm3,效率为~74%。此外,我们还获得了卓越的耐用性,在保持98%初始ESD的同时,循环次数超过10^{{9}}$。所得结果为制备高性能AFE HZO ESCs提供了一种新颖有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信