HydrometallurgyPub Date : 2024-08-19DOI: 10.1016/j.hydromet.2024.106386
{"title":"Environmentally friendly non-saponification solvent extraction and separation process for RE(III) (RE = Eu, Gd and Tb) in acetic acid solution using HEHEHP/n-heptane","authors":"","doi":"10.1016/j.hydromet.2024.106386","DOIUrl":"10.1016/j.hydromet.2024.106386","url":null,"abstract":"<div><p>The key to achieving sustainable metal extraction development is to avoid the generation of high-salt wastewater from the source. Here, a new system for the extraction and separation of lanthanide elements Eu(III), Gd(III) and Tb(III) from the acetic acid solution using HEHEHP (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) was studied. The corresponding parameters including contact time, HEHEHP concentration, concentrations of rare earth metal ions and acetic acid in the initial solution, aqueous/organic phase volume ratio (R<sub>(A/O)</sub>), and temperature were considered to optimize the conditions for the separation of different rare earth elements. The results showed that the separation coefficients of Tb(III)/Gd(III) and Gd(III)/Eu(III) in the acetic acid system were approximately 6.2 and 1.7, with HEHEHP of 0.15 mol/L and R<sub>(A/O)</sub> of 2:1, and the extraction efficiency of RE(III) reached approximately 73.1%, which was higher than that in the hydrochloric acid and sulfuric acid systems. The mechanism associated with the extraction reaction was evaluated and discussed by the maximum loading capacity method, chromatographic analysis, and FT-IR spectrometric analysis. The mechanism followed a cation exchange reaction and acetic acid did not participate in the extraction process. The feasibility of the separation of Tb(III) from Eu(III) and Gd(<em>III</em>)was also given in terms of the separation coefficients between different elements at different extraction conditions. Since saponification is not necessary in the acetic acid extraction system, it can considerably reduce wastewater discharge to the ecological environment from the source.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-08-18DOI: 10.1016/j.hydromet.2024.106384
{"title":"Gold recovery from chloride leach solution of TCCA using D301 anion exchange resin and elution with thiourea","authors":"","doi":"10.1016/j.hydromet.2024.106384","DOIUrl":"10.1016/j.hydromet.2024.106384","url":null,"abstract":"<div><p>Trichloroisocyanuric acid (TCCA), which is used for gold leaching, is an alternative to cyanidation due to its lower toxicity and higher efficiency. This study investigated the gold recovery procedures from highly effective chloride leaching solution using the D301 resin. This approach prevented the inhibition of gold adsorption when using activated carbon. Herein, the optimal conditions for gold adsorption were discussed, including establishing adsorption kinetics and isotherms, and calculating adsorption activation energy. Additionally, SEM (Scanning Electron Microscope), FTIR (Fourier Transform Infrared Spectroscopy), and XPS (X-ray Photoelectron Spectroscopy) techniques were used to reveal the mechanism of gold adsorption using D301 resin. Under optimal conditions (pH 4.0, temperature 25 °C, time 120 min), an average adsorption percentage of 99.2% was achieved. Analysis of the adsorption data confirmed that gold adsorption followed the pseudo-second-order kinetic model and Freundlich adsorption isotherm. The calculated activation energy was 9.69 kJ mol<sup>−1</sup>, indicating a predominance of physical adsorption involving ion exchange reactions with protonated tertiary amine groups in the D301 resin beads. Furthermore, among various eluents tested in desorption experiments, a solution containing a mixture of thiourea and hydrochloric acid with 0.4 mol L<sup>−1</sup> and 0.8 mol L<sup>−1</sup>, respectively, demonstrated superior efficiency, achieving a successful desorption percentage reaching 95.7 ± 0.3% within 80 min. After three cycles of resin regeneration, the regeneration efficiency reached 91.2% while maintaining an average adsorption percentage of 95.3%.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-08-13DOI: 10.1016/j.hydromet.2024.106381
{"title":"Efficient and selective recovery of Mo and V from spent hydrodesulfurization catalysts via oxidation roasting followed by Na2CO3 and NaOH leaching","authors":"","doi":"10.1016/j.hydromet.2024.106381","DOIUrl":"10.1016/j.hydromet.2024.106381","url":null,"abstract":"<div><p>Spent hydrodesulfurization (HDS) catalysts containing large amounts of valuable metals, such as Mo and V, are hazardous solid wastes but also valuable secondary resources. However, the current recovery process suffers from the difficulty of balancing the leaching efficiency of Mo and V and their selectivity over Al. This work focused on the effect of phase transformation during roasting operation on the leaching behavior Mo, V, and Al and adopted an oxidation roasting followed by mixed alkali of Na<sub>2</sub>CO<sub>3</sub> and NaOH leaching process to recover Mo and V from spent HDS catalysts. The results indicated that the phase transformation of Mo, V, and Al species during oxidation roasting process played a crucial role in achieving efficient leaching of Mo and V, as well as reducing leaching efficiency of Al. This transformation involved the change in Mo and V species changed from low valent compounds to high valent oxides, and Al<sub>2</sub>O<sub>3</sub> from γ-phase to θ- and α-phases. In addition, efficient and selective leaching of 99.3% Mo and 97.8% V was realized, with only 0.03% Al being dissolved, by roasting the spent catalysts at 700 °C for 2 h and then leaching with a mixed solution of 1.2 mol/L Na<sub>2</sub>CO<sub>3</sub> and 1.6 mol/L NaOH. The efficient and selective leaching of Mo and V can significantly reduce the burden of subsequent separation and purification, which provided an important prerequisite for the development of a new process for the recovery of Mo and V from HDS spent catalysts in alkaline systems.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-08-08DOI: 10.1016/j.hydromet.2024.106382
{"title":"Efficient ammoximation and regeneration of degraded hydroxyoxime CP150 over TS-1 molecular sieve/H2O2 system and reuse for solvent extraction of Cu(II)","authors":"","doi":"10.1016/j.hydromet.2024.106382","DOIUrl":"10.1016/j.hydromet.2024.106382","url":null,"abstract":"<div><p>The regeneration of failed hydroxyoxime extractants in the copper hydrometallurgy industry is crucial. However, the existing regeneration system has limitations in terms of operability, yield, and environmental friendliness, which restricts its industrial application. This paper presents a clean one-pot ammoximation regeneration system for the in-situ preparation of hydroxylamine for the oximation of aldehydes, catalyzed by TS-1 with NH<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>. It was tailored based on the characteristics of the degraded organic phase produced by long-term operation at the copper solvent extraction site. The developed system demonstrates an excellent regeneration conversion efficiency (>90%) for the degraded copper-extracted organic phase. Following regeneration, the copper extraction efficiency of the organic phase reaches the same level as the fresh organic phase and maintains good copper extraction stability even after multiple extraction cycles. Moreover, the phase separation performance was improved through optimization. This regeneration system meets the demand for environmentally friendly and resourceful utilization of degraded waste organic phases in copper extraction systems.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-31DOI: 10.1016/j.hydromet.2024.106380
{"title":"Improving the transfer of dissolved oxygen in a biological Fe2+ oxidation process using a venturi jet as an intensive aeration system","authors":"","doi":"10.1016/j.hydromet.2024.106380","DOIUrl":"10.1016/j.hydromet.2024.106380","url":null,"abstract":"<div><p>The low bio-production of Fe<sup>3+</sup> as a leaching agent is one of the main limitations to implementing industrial bio-processes at feasibility conditions. The main limitation of the bio-oxidation process of Fe<sup>2+</sup> is the low oxygen transfer to the aqueous phase because of the low oxygen solubility. This study assesses the effectiveness of the venturi jet as an innovative and intensive aeration device for overcoming the oxygen limitation in a continuous ferrous oxidation process in a fixed-bed reactor with immobilized <em>acidithiobacillus ferrooxidans</em>, in contrast to the conventional diffuser aeration device. Firstly, the influence of the airflow and the influence of the medium concentration were determined for the following parameters for both aeration devices; Volumetric mass transfer coefficient (k<sub>L</sub>a), Standard Oxygen <em>Transfer</em> Rate (SOTR), Standard Aeration Efficiency (SAE), and Standard Oxygen Transfer Efficiency (SOTE). Then, both aeration devices were compared in a continuous bio-oxidation process in an up-flow packed bio-reactor (UFPB). The system performance was assessed by monitoring temperature, pH, oxidation-reduction potential, and dissolved oxygen concentration for 69 days. Findings displayed that when aerating with the diffuser, the ferrous oxidation rate was restricted by the low dissolved oxygen availability, being about 1 ppm (1 mg L<sup>−1</sup>). Under these oxygen-limiting conditions, the maximum ferrous (Fe<sup>2+</sup>) oxidation rate was 9.09 g L<sup>−1</sup> h<sup>−1</sup>. However, when aerating with the venturi jet, the dissolved oxygen concentration increased up to 2.70 mg L<sup>−1</sup>, achieving a maximum of 29.11 g L<sup>−1</sup> h<sup>−1</sup>. So, this study has demonstrated that the change in the aeration device has resulted in an improvement in the process, achieving a 3.5-fold increase in the oxidation rate. Furthermore, the venturi jet offered additional advantages over the diffuser, such as requiring less power to deliver the same amount of air, being unaffected by jarosite precipitates, and not requiring a supply of compressed air.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-30DOI: 10.1016/j.hydromet.2024.106379
{"title":"Removal of calcium from phosphoric acid produced by the nitric acid process using solvent extraction with TCHDGA and stripping with water","authors":"","doi":"10.1016/j.hydromet.2024.106379","DOIUrl":"10.1016/j.hydromet.2024.106379","url":null,"abstract":"<div><p>The phosphoric acid produced by the nitric acid method cannot be used as an industrial-grade product as a result of the high calcium nitrate content. It can only be used for fertilizer production due to difficulty of complete removal of calcium nitrate. Herein, an efficient approach for the removal of calcium nitrate from the phosphoric acid produced by the nitric acid process was studied. The proposed process is based on solvent extraction with N, N, N′, N′-tetracyclohexyl-3-oxyglutaramide (TCHDGA). The effects of time, diluent, temperature, impurity ions, and the concentrations of extractant and nitric acid on the extraction of Ca<sup>2+</sup> were considered. A series of characterization tests involving FT-IR spectroscopy, XPS analysis, slope analysis and X-ray single crystal diffracted analysis revealed that the stoichiometry of the complex is (Ca(NO<sub>3</sub>)<sub>2</sub>)(TCHDGA)<sub>3</sub>. The concentration of Ca<sup>2+</sup> in phosphoric acid drops below 5 mg/L a three-stage cross-current extraction process. The stripping efficiency of calcium nitrate in the organic phase by water is above 99.9%. The extraction efficiency of Ca<sup>2+</sup> by TCHDGA remained above 96.8% after ten extraction-stripping cycles, realizing the efficient removal of calcium nitrate in the phosphoric acid produced by nitric acid process without changing the traditional production conditions.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-29DOI: 10.1016/j.hydromet.2024.106378
{"title":"Recovery of indium by solvent extraction with crown ether in the presence of KCl and stripping with HCl: A mechanistic study","authors":"","doi":"10.1016/j.hydromet.2024.106378","DOIUrl":"10.1016/j.hydromet.2024.106378","url":null,"abstract":"<div><p>Hydration of In<sup>3+</sup> is the main factor limiting its extraction efficiency from an aqueous solution during a liquid-liquid extraction process. In this study, KCl was introduced into the aqueous solution to facilitate the formation of InCl<sub>4</sub><sup>−</sup> of low charge density, which is expected to possess much weaker hydration compared with In<sup>3+</sup>, promoting the solvent extraction of indium. The crown ethers (CEs) with varied cavity sizes, benzo-18-crown-6 (B18C6), benzo-15-crown-5 (B15C5), and benzo-12-crown-4 (B12C4), were synthesized. The extraction performance of the CEs toward indium in the presence of sufficient KCl in the aqueous solution was investigated. The liquid-liquid extraction process was analyzed theoretically based on density functional theory (DFT) from the aspects of thermodynamics, geometric structure optimization, electrostatic potential (ESP), and independent gradient model (IGM). The theoretical evaluations agreed well with the experimental results that the hydration of indium could be significantly weakened through the formation of InCl<sub>4</sub><sup>−</sup> and the complexation ability of the CEs toward indium is in the order of B18C6 > B15C5 > B12C4. The complexation mechanism between the CEs and indium during the extraction process was further explored with the assistance of <sup>1</sup>H NMR spectrum and SEM-EDS. The results indicate that crown ether coordinates with K<sup>+</sup> to form [CE-K]<sup>+</sup> at the two-phase interface, which further associates with InCl<sub>4</sub><sup>−</sup> to create the complex of CE-KInCl<sub>4</sub>, realizing the efficient indium extraction. Moreover, B18C6 showed excellent selectivity toward In<sup>3+</sup> over the competing ions such as Fe<sup>3+</sup>, Al<sup>3+</sup>, Zn<sup>2+</sup>, Sn<sup>2+</sup> and Ca<sup>2+</sup> in a complex system. Indium could be efficiently recovered from the loaded organic phase by using 1 M HCl as the stripping agent with a stripping efficiency of 98.1%.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-28DOI: 10.1016/j.hydromet.2024.106366
{"title":"Selective anion exchange adsorption of molybdenum(VI) at low concentrations from an acid leached vanadium shale solution containing aluminium and phosphorus","authors":"","doi":"10.1016/j.hydromet.2024.106366","DOIUrl":"10.1016/j.hydromet.2024.106366","url":null,"abstract":"<div><p>With a decline in high-grade molybdenum reserves, the development of other types of molybdenum resources have received increasing attention. Vanadium shale is a multi-metal shale and fine-grained sedimentary rock comprising small grains and various minerals. After leaching and extracting vanadium, the solution often contains a low concentration of molybdenum. However, because of the low molybdenum concentration, many processing plants treat it as an acidic wastewater, which wastes molybdenum resources and carries the risk of environmental pollution. The leaching process of vanadium shale mostly involves high-temperature and high-pressure operations, which greatly increase the content of impurity ions such as aluminium and phosphorus in the pregnant leach solution. These impurity ions increase the difficulty in separating and recovering molybdenum. In this study, the adsorption and separation of molybdenum at leach liquor of low molybdenum concentration were investigated. The effects of different factors such as: (i) pH of feed solution, (ii) adsorption time, and (iii) presence of impurity ions, aluminium and phosphorus, on the adsorption and separation of molybdenum using five different anion-exchange resins, D201, D296, D301, D314, and D301R, were investigated. The static adsorption and desorption test results showed a molybdenum adsorption capacity of 222 mg/g at pH = 1.5 by the D301 resin. The desorption efficiency using 20% NH₄OH was 96.1%. The adsorption efficiencies of aluminium and phosphorus were 1.31% and 3.10%, respectively. This is a better choice for separating molybdenum from complex solutions. The experimental results from spectra and theoretical calculations showed that the -NH group of D301 resin was combined with the O atoms of MoO<sub>3</sub>·3H<sub>2</sub>O, Al(SO<sub>4</sub>)<sub>2</sub><sup>−</sup>, and H<sub>2</sub>PO<sub>4</sub><sup>−</sup> by electrostatic attraction. The binding energies of these three species were − 311 kJ/mol, −231 kJ/mol, and − 62.0 kJ/mol respectively, indicating that D301 resin preferentially adsorbed MoO<sub>3</sub>·3H<sub>2</sub>O. Based on the above results, the D301 resin can adsorb molybdenum(VI) in complex solutions under low pH conditions, and this study is expected to promote the comprehensive recovery of valuable metals from vanadium shale.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-22DOI: 10.1016/j.hydromet.2024.106369
{"title":"The use of organophosphorus extractants as a component of hydrophobic deep eutectic solvents (HDES) for the processing of spent lithium‑iron phosphate batteries","authors":"","doi":"10.1016/j.hydromet.2024.106369","DOIUrl":"10.1016/j.hydromet.2024.106369","url":null,"abstract":"<div><p>Hydrometallurgical processes for managing industrial waste have attracted significant attention due to tightening global standards on toxic emissions. Among these processes, the use of non-volatile hydrophobic deep eutectic solvents (HDESs) has emerged as a promising approach to optimising extraction processes. In this study, HDESs incorporating tributyl phosphate (TBP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) were investigated in the context of the extraction and separation of elements found in lithium‑iron phosphate batteries, including lithium, aluminium, iron and copper. The physical properties of the HDESs, such as density, viscosity and refractive index, were characterized and the interactions between their components were analysed using infrared spectroscopy. Considering the different classes of extractants represented by D2EHPA and TBP, extraction efficiency for target metals was evaluated across a range of hydrochloric acid concentrations (1–10 mol/L). Optimal conditions for re-extraction (stripping) were identified for extractant regeneration and the production of individual metal ion solutions. Results demonstrated that Fe<sup>3+</sup> ions could be extracted with an efficiency exceeding 99% across the majority of acidity levels, while Al<sup>3+</sup> ions exhibited similar efficiency from a pH of 1.4. In contrast, Cu<sup>2+</sup> ions showed limited extraction (<5%) at lower pH values but the level of extraction increased to 50% at pH 1.9 and above. Leveraging these findings, a sequential extraction scheme is proposed for Al<sup>3+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup> and Li<sup>+</sup> from their mixture, based on a gradual reduction in solution acidity.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-22DOI: 10.1016/j.hydromet.2024.106368
{"title":"Application of nanofiltration for the recovery of nickel glycinates from alkaline glycine-based solutions using polyamide membranes: A technical note","authors":"","doi":"10.1016/j.hydromet.2024.106368","DOIUrl":"10.1016/j.hydromet.2024.106368","url":null,"abstract":"<div><p>Glycine has been intensively investigated as a “green” lixiviant for precious and base metals. Alkaline glycine solutions to extract Ni from sulfide resources has shown promising results. However, a considerable amount of Ni will be lost in the wash solutions when leaching residues are washed during solid-liquid separation of the leachates from their respective leach residues. In this context, this study explored Ni recovery from alkaline glycine-based wash solutions using a polyamide nanofiltration membrane. In the tests using synthetic single and multi-metal solutions, the membrane achieved >95% rejection of Ni in the selected ranges of glycine/Ni molar ratio (up to 5), pressure (15–30 bar), initial nickel concentration (0.5–1.5 g/L), sodium sulfate background concentration (∼30 g/L) and under the use of different pH modifiers (aqueous ammonia and caustic soda). When using a real solution, the concentrations of Ni and other major elements (Cu, S, Co, Mg, Zn) in the final retentate increased by about 5 times at 80 wt% permeate recovery, leaving <3 mg/L major elements in permeate. The permeate stream could be recycled in the washing stage, and the retentate stream could be combined with the pregnant leach solution (PLS) for metals recovery. The investigation demonstrates some of the technical optionality for nickel recovery from filter wash solutions utilising nanofiltration within the context of alkaline glycine-based leach technology and preliminarily demonstrates where it can be used in the structure of flowsheets to recover valuable base metals and reagents for recycle. However, the increased membrane resistance causing a low permeate flux should be concerned due to the considerable dissolved salts, precipitation of gypsum and the increasing feed concentration over time.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001087/pdfft?md5=e0c782ba8f74a88f4b6d238afcb52273&pid=1-s2.0-S0304386X24001087-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}