超临界CO2萃取煤副产品中稀土元素的研究

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Uthej Veerla , Long Fan
{"title":"超临界CO2萃取煤副产品中稀土元素的研究","authors":"Uthej Veerla ,&nbsp;Long Fan","doi":"10.1016/j.hydromet.2025.106550","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for rare earth elements (REEs) in modern technologies has led to growing interest in their efficient recovery from alternative sources. Coal ash, a waste product from coal combustion, has been identified as a potential reservoir of valuable REEs, with concentrations ranging from 270 to 1480 mg/kg. This study investigates the recovery of REEs from various ranks of coal ashes using environmentally benign supercritical carbon dioxide (SC-CO₂) with tributyl phosphate (TBP) and nitric acid (HNO₃) as complexing agents. It suggests the optimal extraction conditions for potential industrial application. Experimental results indicate that sub-bituminous coal ash exhibits the highest REE recovery (60 %), followed by bituminous (48 %) and anthracite (38 %). The extraction mechanism involves three key steps: (1) dissolution of metal oxides into metal ions using HNO₃, (2) complexation of metal ions with TBP, and (3) extraction and dissolution of metal complexes in SC-CO₂. The optimum extraction conditions were determined at 60 °C, 2175 psi (15 MPa), a solid-to-chelating-agent ratio of 10:1, 120-min residence time, and TBP-HNO₃ ratio of 1:5. Under these conditions, anthracite ash achieved a recovery of 120 mg/L, bituminous ash 330 mg/L, and sub-bituminous ash 180 mg/L. The five-stage purification process that effectively purified REEs by reducing impurities such as Al, Ca, Fe, K, Mg and Mn with minimal environmental impact due to CO₂ recyclability. This research highlights supercritical fluid extraction (SCFE) as a green, scalable alternative for REEs recovery, supporting circular economy principles and offering an estimated $4.3 billion annual economic potential from U.S. coal ash.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106550"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of rare earth element extraction from coal byproducts using supercritical CO2\",\"authors\":\"Uthej Veerla ,&nbsp;Long Fan\",\"doi\":\"10.1016/j.hydromet.2025.106550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing demand for rare earth elements (REEs) in modern technologies has led to growing interest in their efficient recovery from alternative sources. Coal ash, a waste product from coal combustion, has been identified as a potential reservoir of valuable REEs, with concentrations ranging from 270 to 1480 mg/kg. This study investigates the recovery of REEs from various ranks of coal ashes using environmentally benign supercritical carbon dioxide (SC-CO₂) with tributyl phosphate (TBP) and nitric acid (HNO₃) as complexing agents. It suggests the optimal extraction conditions for potential industrial application. Experimental results indicate that sub-bituminous coal ash exhibits the highest REE recovery (60 %), followed by bituminous (48 %) and anthracite (38 %). The extraction mechanism involves three key steps: (1) dissolution of metal oxides into metal ions using HNO₃, (2) complexation of metal ions with TBP, and (3) extraction and dissolution of metal complexes in SC-CO₂. The optimum extraction conditions were determined at 60 °C, 2175 psi (15 MPa), a solid-to-chelating-agent ratio of 10:1, 120-min residence time, and TBP-HNO₃ ratio of 1:5. Under these conditions, anthracite ash achieved a recovery of 120 mg/L, bituminous ash 330 mg/L, and sub-bituminous ash 180 mg/L. The five-stage purification process that effectively purified REEs by reducing impurities such as Al, Ca, Fe, K, Mg and Mn with minimal environmental impact due to CO₂ recyclability. This research highlights supercritical fluid extraction (SCFE) as a green, scalable alternative for REEs recovery, supporting circular economy principles and offering an estimated $4.3 billion annual economic potential from U.S. coal ash.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"237 \",\"pages\":\"Article 106550\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X2500115X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X2500115X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

现代技术对稀土元素的需求日益增加,导致人们对从替代来源中有效回收稀土元素的兴趣日益浓厚。煤灰是煤燃烧产生的废物,已被确定为有价值稀土元素的潜在储层,其浓度从270至1480毫克/公斤不等。本文研究了用无害环境的超临界二氧化碳(SC-CO₂)与磷酸三丁酯(TBP)和硝酸(HNO₃)作为络合剂,从不同等级的煤灰中回收稀土。提出了具有工业应用潜力的最佳提取条件。实验结果表明,亚烟煤的稀土元素回收率最高(60%),其次是烟煤(48%)和无烟煤(38%)。萃取机理包括三个关键步骤:(1)利用HNO₃将金属氧化物溶解为金属离子,(2)金属离子与TBP络合,(3)金属配合物在SC-CO₂中的萃取和溶解。确定了最佳提取条件:60℃,2175 psi (15 MPa),固相-螯合剂比为10:1,停留时间为120 min, TBP-HNO₃比为1:5。在此条件下,无烟煤灰分回收率为120 mg/L,沥青灰分回收率为330 mg/L,亚沥青灰分回收率为180 mg/L。通过减少Al、Ca、Fe、K、Mg、Mn等杂质,有效地净化稀土元素的五阶段净化过程,由于CO₂可循环利用,对环境的影响最小。这项研究强调超临界流体萃取(SCFE)是一种绿色的、可扩展的稀土回收替代方案,支持循环经济原则,预计每年可从美国煤灰中获得43亿美元的经济潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of rare earth element extraction from coal byproducts using supercritical CO2
The increasing demand for rare earth elements (REEs) in modern technologies has led to growing interest in their efficient recovery from alternative sources. Coal ash, a waste product from coal combustion, has been identified as a potential reservoir of valuable REEs, with concentrations ranging from 270 to 1480 mg/kg. This study investigates the recovery of REEs from various ranks of coal ashes using environmentally benign supercritical carbon dioxide (SC-CO₂) with tributyl phosphate (TBP) and nitric acid (HNO₃) as complexing agents. It suggests the optimal extraction conditions for potential industrial application. Experimental results indicate that sub-bituminous coal ash exhibits the highest REE recovery (60 %), followed by bituminous (48 %) and anthracite (38 %). The extraction mechanism involves three key steps: (1) dissolution of metal oxides into metal ions using HNO₃, (2) complexation of metal ions with TBP, and (3) extraction and dissolution of metal complexes in SC-CO₂. The optimum extraction conditions were determined at 60 °C, 2175 psi (15 MPa), a solid-to-chelating-agent ratio of 10:1, 120-min residence time, and TBP-HNO₃ ratio of 1:5. Under these conditions, anthracite ash achieved a recovery of 120 mg/L, bituminous ash 330 mg/L, and sub-bituminous ash 180 mg/L. The five-stage purification process that effectively purified REEs by reducing impurities such as Al, Ca, Fe, K, Mg and Mn with minimal environmental impact due to CO₂ recyclability. This research highlights supercritical fluid extraction (SCFE) as a green, scalable alternative for REEs recovery, supporting circular economy principles and offering an estimated $4.3 billion annual economic potential from U.S. coal ash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信