{"title":"超临界CO2萃取煤副产品中稀土元素的研究","authors":"Uthej Veerla , Long Fan","doi":"10.1016/j.hydromet.2025.106550","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for rare earth elements (REEs) in modern technologies has led to growing interest in their efficient recovery from alternative sources. Coal ash, a waste product from coal combustion, has been identified as a potential reservoir of valuable REEs, with concentrations ranging from 270 to 1480 mg/kg. This study investigates the recovery of REEs from various ranks of coal ashes using environmentally benign supercritical carbon dioxide (SC-CO₂) with tributyl phosphate (TBP) and nitric acid (HNO₃) as complexing agents. It suggests the optimal extraction conditions for potential industrial application. Experimental results indicate that sub-bituminous coal ash exhibits the highest REE recovery (60 %), followed by bituminous (48 %) and anthracite (38 %). The extraction mechanism involves three key steps: (1) dissolution of metal oxides into metal ions using HNO₃, (2) complexation of metal ions with TBP, and (3) extraction and dissolution of metal complexes in SC-CO₂. The optimum extraction conditions were determined at 60 °C, 2175 psi (15 MPa), a solid-to-chelating-agent ratio of 10:1, 120-min residence time, and TBP-HNO₃ ratio of 1:5. Under these conditions, anthracite ash achieved a recovery of 120 mg/L, bituminous ash 330 mg/L, and sub-bituminous ash 180 mg/L. The five-stage purification process that effectively purified REEs by reducing impurities such as Al, Ca, Fe, K, Mg and Mn with minimal environmental impact due to CO₂ recyclability. This research highlights supercritical fluid extraction (SCFE) as a green, scalable alternative for REEs recovery, supporting circular economy principles and offering an estimated $4.3 billion annual economic potential from U.S. coal ash.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106550"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of rare earth element extraction from coal byproducts using supercritical CO2\",\"authors\":\"Uthej Veerla , Long Fan\",\"doi\":\"10.1016/j.hydromet.2025.106550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing demand for rare earth elements (REEs) in modern technologies has led to growing interest in their efficient recovery from alternative sources. Coal ash, a waste product from coal combustion, has been identified as a potential reservoir of valuable REEs, with concentrations ranging from 270 to 1480 mg/kg. This study investigates the recovery of REEs from various ranks of coal ashes using environmentally benign supercritical carbon dioxide (SC-CO₂) with tributyl phosphate (TBP) and nitric acid (HNO₃) as complexing agents. It suggests the optimal extraction conditions for potential industrial application. Experimental results indicate that sub-bituminous coal ash exhibits the highest REE recovery (60 %), followed by bituminous (48 %) and anthracite (38 %). The extraction mechanism involves three key steps: (1) dissolution of metal oxides into metal ions using HNO₃, (2) complexation of metal ions with TBP, and (3) extraction and dissolution of metal complexes in SC-CO₂. The optimum extraction conditions were determined at 60 °C, 2175 psi (15 MPa), a solid-to-chelating-agent ratio of 10:1, 120-min residence time, and TBP-HNO₃ ratio of 1:5. Under these conditions, anthracite ash achieved a recovery of 120 mg/L, bituminous ash 330 mg/L, and sub-bituminous ash 180 mg/L. The five-stage purification process that effectively purified REEs by reducing impurities such as Al, Ca, Fe, K, Mg and Mn with minimal environmental impact due to CO₂ recyclability. This research highlights supercritical fluid extraction (SCFE) as a green, scalable alternative for REEs recovery, supporting circular economy principles and offering an estimated $4.3 billion annual economic potential from U.S. coal ash.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"237 \",\"pages\":\"Article 106550\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X2500115X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X2500115X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Investigation of rare earth element extraction from coal byproducts using supercritical CO2
The increasing demand for rare earth elements (REEs) in modern technologies has led to growing interest in their efficient recovery from alternative sources. Coal ash, a waste product from coal combustion, has been identified as a potential reservoir of valuable REEs, with concentrations ranging from 270 to 1480 mg/kg. This study investigates the recovery of REEs from various ranks of coal ashes using environmentally benign supercritical carbon dioxide (SC-CO₂) with tributyl phosphate (TBP) and nitric acid (HNO₃) as complexing agents. It suggests the optimal extraction conditions for potential industrial application. Experimental results indicate that sub-bituminous coal ash exhibits the highest REE recovery (60 %), followed by bituminous (48 %) and anthracite (38 %). The extraction mechanism involves three key steps: (1) dissolution of metal oxides into metal ions using HNO₃, (2) complexation of metal ions with TBP, and (3) extraction and dissolution of metal complexes in SC-CO₂. The optimum extraction conditions were determined at 60 °C, 2175 psi (15 MPa), a solid-to-chelating-agent ratio of 10:1, 120-min residence time, and TBP-HNO₃ ratio of 1:5. Under these conditions, anthracite ash achieved a recovery of 120 mg/L, bituminous ash 330 mg/L, and sub-bituminous ash 180 mg/L. The five-stage purification process that effectively purified REEs by reducing impurities such as Al, Ca, Fe, K, Mg and Mn with minimal environmental impact due to CO₂ recyclability. This research highlights supercritical fluid extraction (SCFE) as a green, scalable alternative for REEs recovery, supporting circular economy principles and offering an estimated $4.3 billion annual economic potential from U.S. coal ash.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.