Hydrometallurgy最新文献

筛选
英文 中文
Enhancing Lithium extraction via ionic liquid coupled electrochemical methods 离子液体耦合电化学方法提高锂提取效率
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-24 DOI: 10.1016/j.hydromet.2025.106539
Xinyuan Lan , Rong Liu , Liyan Xue , Minzhong Huang , Meiying Xie , Hongye Wang , Hao Zhang , Fan Yang
{"title":"Enhancing Lithium extraction via ionic liquid coupled electrochemical methods","authors":"Xinyuan Lan ,&nbsp;Rong Liu ,&nbsp;Liyan Xue ,&nbsp;Minzhong Huang ,&nbsp;Meiying Xie ,&nbsp;Hongye Wang ,&nbsp;Hao Zhang ,&nbsp;Fan Yang","doi":"10.1016/j.hydromet.2025.106539","DOIUrl":"10.1016/j.hydromet.2025.106539","url":null,"abstract":"<div><div>The efficient recovery of lithium (Li<sup>+</sup>) from salt lakes has become a pressing issue for the lithium battery industry. In this study, an electrochemically enhanced extraction system with industrialization potential was developed, which increased the separation efficiency of Li<sup>+</sup> by coupling an electric field with ionic liquid extraction. A promising 1-butyl-3-methylimidazolium-2-thiophenecarbonyl trifluoroacetone ([C<sub>4</sub>mim][TTA]) extraction agent was developed. Furthermore, the functionalized ionic liquid (FIL) was dissolved in an ionic liquid mixture to further increase its extraction capacity. The separation performance and mechanisms of Li<sup>+</sup> through [C<sub>4</sub>mim][TTA] liquid–liquid extraction were investigated. The results showed that within a pH range greater than 2, [C<sub>4</sub>mim][TTA] had a very high separation efficiency for Li<sup>+</sup>. Additionally, liquid–liquid extraction in solutions simulating the concentrations of Li<sup>+</sup>, Na<sup>+</sup>, and K<sup>+</sup> found in salt lakes revealed very high Li<sup>+</sup> separation coefficients of β<sub>Li/K</sub> = 3746 and β<sub>Li/Na</sub> = 1287. Under an applied electric field of 2.4 V, the electrochemically enhanced extraction system achieved separation coefficients of β<sub>Li/K</sub> = 6678 and β<sub>Li/Na</sub> = 3068 within 2 h, which represent the highest reported values to date. In this study, a novel electrochemically coupled ionic liquid extraction system with potential for industrialization is proposed.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106539"},"PeriodicalIF":4.8,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144694575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissolution of scheelite under soft acidic conditions via the formation of polyoxotungstate: kinetics and mechanism supported by small-angle X-ray scattering (SAXS) to identify and quantify H3PW12O40 软酸性条件下白钨矿溶解形成多钨氧酸盐:小角x射线散射(SAXS)鉴定和量化H3PW12O40的动力学和机理
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-20 DOI: 10.1016/j.hydromet.2025.106538
Valentin Legrand, Stéphanie Szenknect, Olivier Diat, Luc Girard, Pierre Bauduin
{"title":"Dissolution of scheelite under soft acidic conditions via the formation of polyoxotungstate: kinetics and mechanism supported by small-angle X-ray scattering (SAXS) to identify and quantify H3PW12O40","authors":"Valentin Legrand,&nbsp;Stéphanie Szenknect,&nbsp;Olivier Diat,&nbsp;Luc Girard,&nbsp;Pierre Bauduin","doi":"10.1016/j.hydromet.2025.106538","DOIUrl":"10.1016/j.hydromet.2025.106538","url":null,"abstract":"<div><div>The decomposition of scheelite in a synergistic H<sub>2</sub>SO<sub>4</sub>-H<sub>3</sub>PO<sub>4</sub> mixture is an effective method for extracting tungsten from mining concentrates. The driving force behind the dissolution of scheelite in the H<sub>2</sub>SO<sub>4</sub>-H<sub>3</sub>PO<sub>4</sub> mixture is the formation of a soluble Keggin-type polyoxotungstate, H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub>, which prevents the formation of very low solubility tungstic acid. In this work, a multiparametric study of scheelite dissolution kinetics was carried out in a synergistic acid mixture. In particular, the independent contributions of temperature, acid concentration, and W:P molar ratio on scheelite dissolution kinetics and H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> formation yield were evaluated. To this end, a method based on the use of small-angle X-ray scattering (SAXS) was developed to identify and quantify H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> under different operating conditions. The results provide a better understanding of the stability range of H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> in terms of H<sub>2</sub>SO<sub>4</sub> concentration and stoichiometric W:P ratio. These findings led to the selection of optimized, soft-leaching conditions that ensure rapid dissolution of scheelite while avoiding surface passivation by the precipitation of secondary phases. A comparison with speciation calculations using thermodynamic data reported in the literature reveals an absence of a self-consistent thermodynamic dataset. Thus, measuring the concentration of H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> in the leachate was necessary to optimize the dissolution conditions. From this perpective, SAXS appears to be a suitable quantitative method.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106538"},"PeriodicalIF":4.8,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144664784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of coal-based activated carbon via one-step activation and its adsorption and stripping performance for gold thiosulfate complexes 一步活化煤基活性炭的合成及其对硫代硫酸金配合物的吸附和剥离性能
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-16 DOI: 10.1016/j.hydromet.2025.106534
Qiang Wang , Tong Liu , Ying Li , Yanhe Nie
{"title":"Synthesis of coal-based activated carbon via one-step activation and its adsorption and stripping performance for gold thiosulfate complexes","authors":"Qiang Wang ,&nbsp;Tong Liu ,&nbsp;Ying Li ,&nbsp;Yanhe Nie","doi":"10.1016/j.hydromet.2025.106534","DOIUrl":"10.1016/j.hydromet.2025.106534","url":null,"abstract":"<div><div>The challenges associated with recovering gold from leachates restrict the wide applicability of thiosulfate systems. This study developed a facile one-step activation strategy for synthesizing coal-based activated carbon from low-cost, accessible bituminous coal precursors; the activated carbon was subsequently used to adsorb gold from thiosulfate solutions. The optimal conditions for synthesizing coal-based activated carbon were investigated, along with the effects of pH, temperature, and initial gold concentration on [Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3−</sup> adsorption by the coal-based activated carbon. The structural and surface properties of the adsorbent were analyzed before and after gold adsorption, which revealed that the initially smooth surface morphology of raw coal became porous after activation and that the surface was loaded with <img>SCN groups. The adsorption process followed pseudo-second-order kinetics and was described using the Freundlich model. The adsorption of [Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3−</sup> on the coal-based activated carbon was a fast endothermic process. The adsorption equilibrium was attained within 60 min, at a gold concentration of 10 mg/L. The maximum adsorption capacity of gold on the coal-based activated carbon was 3.29 mg/g, at a gold concentration of 80 mg/L at 45 °C. During the gold adsorption, ligand exchange occurred between the [Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3−</sup> ions in the solution and the <img>SCN groups on the coal-based activated-carbon surface, ultimately facilitating the adsorption of Au(I) in the solution on the activated-carbon surface. Moreover, the [Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3−</sup>-loaded coal-based activated carbon could be effectively eluted by thiosulfate. Hence, this study provides theoretical guidance and a practical basis for the adsorption of gold from thiosulfate leachates using coal-based activated carbon while facilitating clean, high-value utilization of coal resources.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106534"},"PeriodicalIF":4.8,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the mechanism of the dissolution of gypsum (calcium sulfate dihydrate) 石膏(二水硫酸钙)溶解机理研究
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-14 DOI: 10.1016/j.hydromet.2025.106535
Frank K. Crundwell
{"title":"On the mechanism of the dissolution of gypsum (calcium sulfate dihydrate)","authors":"Frank K. Crundwell","doi":"10.1016/j.hydromet.2025.106535","DOIUrl":"10.1016/j.hydromet.2025.106535","url":null,"abstract":"<div><div>The dissolution of minerals is central to many fields of research interest, including hydrometallurgy, materials science, and geochemistry. The successful development of a comprehensive understanding of the mechanism of dissolution will have an impact on these fields. The challenge for the dissolution of gypsum is that rate of dissolution is proportional to the molar concentration of the dissolved salt, yet the solubility product is proportional to the square of the molar concentration of dissolved salt. Deriving an expression that is consistent with both the kinetics and thermodynamics has vexed researchers for decades. Furthermore, the zeta potential of gypsum shows no clear dependence on pH. In this paper, we show that the experimental data for the kinetics of dissolution, the thermodynamics describing the solubility product, and the zeta potential describing the surface charge are reconciled by accounting for the surface charge using the surface vacancy model of dissolution, and in doing so provide insight into the elementary steps involved in the dissolution of gypsum.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106535"},"PeriodicalIF":4.8,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation of thorium using new solvent extractant derived from recycling discarded plastic bottles 利用回收废旧塑料瓶提取的新型溶剂萃取剂分离钍
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-12 DOI: 10.1016/j.hydromet.2025.106533
Ahmed Orabi , Hend Salem , Nagwa Falila , Doaa Ismaiel , Magd Badr
{"title":"Separation of thorium using new solvent extractant derived from recycling discarded plastic bottles","authors":"Ahmed Orabi ,&nbsp;Hend Salem ,&nbsp;Nagwa Falila ,&nbsp;Doaa Ismaiel ,&nbsp;Magd Badr","doi":"10.1016/j.hydromet.2025.106533","DOIUrl":"10.1016/j.hydromet.2025.106533","url":null,"abstract":"<div><div>Due to the non-biodegradable nature of plastic bottle waste, this work offers a method to recycle this waste by converting it into a valuable and efficient extractor for thorium separation from spent ore. A new promising extractant (Rec-UPEST) was successfully synthesized based on the glycolysis of plastic bottle waste by utilizing a mixture of glycerol and diethylene glycol, followed by esterification using the natural fatty acid of linolenic acid. Several characterizations, such as FTIR spectrometry, <sup>1</sup>H NMR analysis, and MS analysis, were performed to ensure its felicitous preparation. The produced material (Rec-UPEST) dissolved in CHCl<sub>3</sub> could extract Th(IV) efficiently with the maximum loading capacity of 1.08 g L<sup>−1</sup> at 15 min, organic to aqueous ratio = 1:1, <em>T</em> = 298 K, and pH = 2. Infrared data confirmed that the extraction was achieved by the bonding of the extractant to the thorium through glycol and ester oxygen atoms. The slope analysis technique inferred that Rec-UPEST has been able to extract Th as a complex with a 2:1 (Rec-UPEST: Th) molar ratio. In two stages, as shown by the resulting McCabe-Thiele diagrams, Th can be successfully extracted and stripped. Thermodynamic calculations showed that Rec-UPEST /Th extraction is an exothermic process. The stripping process of Th (99.8 %) was achieved using 2 mol L<sup>−1</sup> HNO<sub>3</sub>. To compile all of the recovery steps of Th from the waste residue of the mineralized microgranite dike used in this research, a proposed flow diagram was created.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106533"},"PeriodicalIF":4.8,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144621881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the leaching behaviour and particle-size distribution dynamics of poly-disperse particulate solids in a batch reactor 间歇式反应器中多分散颗粒固体的浸出行为和粒径分布动力学模拟
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-08 DOI: 10.1016/j.hydromet.2025.106532
Pavel Raschman, Ľuboš Popovič, Maryna Kyslytsyna, Gabriel Sučik
{"title":"Modelling the leaching behaviour and particle-size distribution dynamics of poly-disperse particulate solids in a batch reactor","authors":"Pavel Raschman,&nbsp;Ľuboš Popovič,&nbsp;Maryna Kyslytsyna,&nbsp;Gabriel Sučik","doi":"10.1016/j.hydromet.2025.106532","DOIUrl":"10.1016/j.hydromet.2025.106532","url":null,"abstract":"<div><div>A material-balance model for the leaching of poly-disperse particulate solids, combining the particle size distribution (PSD) and the shrinking particle model (SPM), has been proposed. This model was applied to the leaching of crude natural magnesite (CNM) with dilute HCl solutions. A CNM sample with wide PSD was used to determine the values of apparent reaction order (0.31) and activation energy (51.5 kJ mol<sup>−1</sup>) from measured data, and to develop a simulation model. Another CNM sample, with identical chemical and phase composition but different PSD, was subsequently used to experimentally investigate how the degree of conversion and PSD change with the leaching time, and to validate the simulation model. Comparison of the experimental and simulation results showed that (a) the kinetic parameter values obtained by the proposed method characterise the intrinsic chemical reaction on the liquid-solid phase interface, regardless of the PSD; and (b) the proposed model can predict how the degree of conversion and PSD of a poly-disperse particulate solid change during the leaching in a batch reactor.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106532"},"PeriodicalIF":4.8,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144595488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Choline chloride-lactic acid-ascorbic acid (ChCl-LA-AA) based green deep eutectic solvent for leaching LiMn2O4 cathode material of spent Li-ion batteries 氯化胆碱-乳酸-抗坏血酸(ChCl-LA-AA)基绿色深共晶溶剂浸出废锂离子电池正极材料LiMn2O4
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-07 DOI: 10.1016/j.hydromet.2025.106529
Jasreen Kaur Jasmel Singh , Masud Rana , Md Ishtiaq Hossain Khan , Young Tae Jo, Jeong-Hun Park
{"title":"Choline chloride-lactic acid-ascorbic acid (ChCl-LA-AA) based green deep eutectic solvent for leaching LiMn2O4 cathode material of spent Li-ion batteries","authors":"Jasreen Kaur Jasmel Singh ,&nbsp;Masud Rana ,&nbsp;Md Ishtiaq Hossain Khan ,&nbsp;Young Tae Jo,&nbsp;Jeong-Hun Park","doi":"10.1016/j.hydromet.2025.106529","DOIUrl":"10.1016/j.hydromet.2025.106529","url":null,"abstract":"<div><div>The application of lithium manganese oxide (LMO) as a cathode material in Li-ion batteries (LIBs) is increasing due to its affordability, safety, nontoxicity, and high energy storage capabilities. Although its use in electric vehicles (EVs) and portable devices is proliferating, research on recycling valuable metals from spent batteries of this type remains limited. Therefore, this study investigates the recycling of lithium (Li) and manganese (Mn) from spent LiMn<sub>2</sub>O<sub>4</sub> cathode materials using a choline chloride and lactic acid (ChCl-LA) deep eutectic solvent (DES) in the presence of various reducing agents such as ascorbic acid (AA), glucose, and formic acid (FA). The compositions of the spent cathode LiMn<sub>2</sub>O<sub>4</sub> material, solid residue, and the leachate obtained post-leaching were analyzed using ICP-OES, XPS, SEM-EDS, and XRD analyses. Results indicated that about 100 % leaching efficiencies of both Li and Mn metals were achieved at 90 °C, 1 h, 20 g/L solid-to-liquid ratio and a 1:2:1 M ratio of ChCl-LA-AA. The XRD analysis results showed the presence of minor peaks of manganese oxide in the solid residues obtained from glucose and FA leaching, while the LiMn<sub>2</sub>O<sub>4</sub> peaks are absent after the treatment of AA, confirming the effective extraction of metallic elements. Meanwhile, the SEM-EDS analysis showed the raw LiMn<sub>2</sub>O<sub>4</sub> material had agglomerated nanoparticles, while the solid residues exhibited increased porosity and reduced Mn content (26.1 wt% for glucose and 23.9 wt% for FA). The solid residue obtained after leaching with AA showed a significant increase in carbon content (82.1 %) and a decrease in Mn (1.42 %). The XPS spectra further confirmed the reduction of manganese (III) or manganese (IV) oxidation states into manganese (II) state and almost complete leaching of Mn and Li. Finally, a detailed mechanism for Mn and Li leaching from the spent LiMn<sub>2</sub>O<sub>4</sub> was proposed. The recycling process applied in this study is shown to be feasible and promising for broader application.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106529"},"PeriodicalIF":4.8,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arsenic precipitation and bioscorodite crystallization from acidic metallurgical wastewater under different bioreactor schemes: In-silico performance analysis 不同生物反应器方案下酸性冶金废水中的砷沉淀和生物云母结晶:硅性能分析
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-04 DOI: 10.1016/j.hydromet.2025.106531
Evelyn Gaxiola-Muñiz , Ricardo Aguilar-López , Sergio A. Medina-Moreno , Edgar N. Tec-Caamal
{"title":"Arsenic precipitation and bioscorodite crystallization from acidic metallurgical wastewater under different bioreactor schemes: In-silico performance analysis","authors":"Evelyn Gaxiola-Muñiz ,&nbsp;Ricardo Aguilar-López ,&nbsp;Sergio A. Medina-Moreno ,&nbsp;Edgar N. Tec-Caamal","doi":"10.1016/j.hydromet.2025.106531","DOIUrl":"10.1016/j.hydromet.2025.106531","url":null,"abstract":"<div><div>Arsenic removal from water is still a challenge to overcome, and the biologically induced formation of scorodite offers an effective approach for treating arsenic-containing effluents from the metallurgical industry. This paper presents a model-based analysis of the dynamics of the overall bioscorodite process under different bioreactor schemes. For this purpose, a modified model was experimentally validated obtaining 0.87 &lt; R<sup>2</sup> &lt; 0.99 for all variables with <em>p</em>-values &lt;0.001. The validated model was able to adequately predict the dynamics of each variable, which were verified by experimental observations. Subsequently, batch, fed-batch, combined batch/continuous, single-stage, and multi-stage continuous bioreactors were investigated through simulations, testing operational variables that influence the arsenic removal capacity, such as inoculum, ion concentration, dilution rate, and seeding. A comparative basis was then established to identify the bioreactor setups that enhance the arsenic immobilization as a bioscorodite. Single-stage and cascade bioreactors had high arsenic precipitation rates (up to 3.2 g L<sup>−1</sup> d<sup>−1</sup>) and crystal sizes around ∼150 μm. Results showed that three reactors connected in series were able to precipitate 87 % arsenic with a high fed concentration (6.2 g L<sup>−1</sup>), while a higher number of serial reactors may increase conversion but affect negatively the practicality and feasibility of the system. Combined batch/continuous scheme was useful to obtain large crystal sizes, up to 225 μm. These findings underscore the effectiveness of a model-based design for bioscorodite crystallization process, providing a promising and scalable solution for arsenic removal from industrial effluents.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106531"},"PeriodicalIF":4.8,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precipitation of rare earth phosphates through apatite leach as by-product of nitrophos acid from unconventional phosphate deposit of carbonatite, Malakand, Pakistan 巴基斯坦马拉坎德碳酸盐岩非常规磷矿硝磷副产物磷灰石浸出沉淀稀土磷酸盐
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-03 DOI: 10.1016/j.hydromet.2025.106530
Farva Arshad , Munirah Atique Khan , Attiqa Nasir , Muhammad Haider Ali , Lubna Basit , Muhammad Nasir Siddique , Muhammad Nadeem
{"title":"Precipitation of rare earth phosphates through apatite leach as by-product of nitrophos acid from unconventional phosphate deposit of carbonatite, Malakand, Pakistan","authors":"Farva Arshad ,&nbsp;Munirah Atique Khan ,&nbsp;Attiqa Nasir ,&nbsp;Muhammad Haider Ali ,&nbsp;Lubna Basit ,&nbsp;Muhammad Nasir Siddique ,&nbsp;Muhammad Nadeem","doi":"10.1016/j.hydromet.2025.106530","DOIUrl":"10.1016/j.hydromet.2025.106530","url":null,"abstract":"<div><div>The igneous carbonatite apatite ore of Sellai Patti (Malakand, Pakistan) was beneficiated through mineral processing methods (crushing, grinding, gravity separation, and magnetic separation). The concentrate [Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>, F] (30 % P<sub>2</sub>O<sub>5</sub>, 0.7 % REEs) was leached with 65 % nitric acid (S/L 0.42, 65 °C, 700 rpm). The leachate (2.78 g/L REEs, 154 g/L P<sub>2</sub>O<sub>5</sub>) yielded a 92 % recovery of REEs. Precipitation of REEs was performed with 33 % ammonia solution by two different methods. The direct precipitation process (DPP), produced REE precipitates (34 %) at a pH of 0.2–0.5 with a subsequent hot washing. The remaining filtrate, after precipitation, contained REEs at a low concentration of 0.2 g/L, 97 g/L P<sub>2</sub>O<sub>5</sub> and calcium up to 102 g/L. In the nitrophos precipitation process (NPP), a pre-concentration of REEs from 2.8 g/L to 4.1 g/L was observed through the removal of dissolved calcium in the form of calcium nitrate tetrahydrate (CNTH) as a result of freezing the leachate at −20 °C. The precipitates (9 % REEs) obtained at pH 1.7 followed by its re-dissolution in 65 % nitric acid (S/L 1:10) and overnight recrystallization with 50 % excess oxalic acid enhanced REEs concentration up to 30 %. The leftover nitrophos acid (NP acid), a precursor of nitrophos fertilizer, contained only &lt;1 mg/L of REEs, 135 g/L of P<sub>2</sub>O<sub>5</sub>, and up to 40 g/L of calcium. The present research advances a sustainable and efficient methodology for the extraction of REEs through an innovative and significantly effective DPP.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106530"},"PeriodicalIF":4.8,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaching kinetics of molybdenite with layered structure and hydrophobic properties in the H2SO4-H2O2-H2O system at atmospheric pressure 层状疏水性辉钼矿在常压H2SO4-H2O2-H2O体系中的浸出动力学
IF 4.8 2区 材料科学
Hydrometallurgy Pub Date : 2025-07-03 DOI: 10.1016/j.hydromet.2025.106527
Zhiyuan Chen , Zihui Jiang , Qiu Hu , Jiangtao Li
{"title":"Leaching kinetics of molybdenite with layered structure and hydrophobic properties in the H2SO4-H2O2-H2O system at atmospheric pressure","authors":"Zhiyuan Chen ,&nbsp;Zihui Jiang ,&nbsp;Qiu Hu ,&nbsp;Jiangtao Li","doi":"10.1016/j.hydromet.2025.106527","DOIUrl":"10.1016/j.hydromet.2025.106527","url":null,"abstract":"<div><div>Previous studies on the leaching kinetics of molybdenite were primarily based on processing data using a contraction core model with spherical mineral particles. However, molybdenite particles exhibit a thin plate and layered structure. In this study, a model of circular particles was employed to derive the kinetic equation. The apparent activation energies of the molybdenite leaching reaction, both without mechanical activation and with mechanical activation treatment, were calculated as 55.3 kJ/mol and 49.5 kJ/mol, respectively. The layered structure of molybdenite renders its mineral particles challenging to grind during the ball milling process. Nonetheless, this process enhanced the active point of the mineral to a certain extent, thereby facilitating the leaching reaction. The rate-limiting step of the leaching reaction was identified as the chemical reaction step. Specifically, the reaction order of H<sub>2</sub>SO<sub>4</sub> and H<sub>2</sub>O<sub>2</sub> were determined as 0.063 and 0.959, respectively. Notably, variations in the H<sub>2</sub>O<sub>2</sub> concentration exerted a significant impact on the leaching effect, while changes in the concentration of H<sub>2</sub>SO<sub>4</sub> exhibited a relatively smaller effect. Additionally, molybdenite exhibited strong hydrophobic properties. The addition of surfactants improved the reaction environment and enhanced the leaching effect. The expression for leaching kinetics was defined as follows:<span><span><span><math><mn>1</mn><mo>−</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></msqrt><mo>=</mo><msub><mi>k</mi><mi>r</mi></msub><mi>t</mi><mo>=</mo><mn>7.73</mn><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup><msubsup><mi>r</mi><mn>0</mn><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><msubsup><mi>C</mi><mrow><mi>H</mi><mn>2</mn><mi>SO</mi><mn>4</mn></mrow><mn>0.063</mn></msubsup><msubsup><mi>C</mi><mrow><mi>H</mi><mn>2</mn><mi>O</mi><mn>2</mn></mrow><mn>0.959</mn></msubsup><msup><mi>e</mi><mrow><mo>−</mo><mfrac><mn>59706</mn><mi>RT</mi></mfrac></mrow></msup><mi>t</mi></math></span></span></span></div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106527"},"PeriodicalIF":4.8,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信