Arsenic precipitation and bioscorodite crystallization from acidic metallurgical wastewater under different bioreactor schemes: In-silico performance analysis
IF 4.8 2区 材料科学Q1 METALLURGY & METALLURGICAL ENGINEERING
Evelyn Gaxiola-Muñiz , Ricardo Aguilar-López , Sergio A. Medina-Moreno , Edgar N. Tec-Caamal
{"title":"Arsenic precipitation and bioscorodite crystallization from acidic metallurgical wastewater under different bioreactor schemes: In-silico performance analysis","authors":"Evelyn Gaxiola-Muñiz , Ricardo Aguilar-López , Sergio A. Medina-Moreno , Edgar N. Tec-Caamal","doi":"10.1016/j.hydromet.2025.106531","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic removal from water is still a challenge to overcome, and the biologically induced formation of scorodite offers an effective approach for treating arsenic-containing effluents from the metallurgical industry. This paper presents a model-based analysis of the dynamics of the overall bioscorodite process under different bioreactor schemes. For this purpose, a modified model was experimentally validated obtaining 0.87 < R<sup>2</sup> < 0.99 for all variables with <em>p</em>-values <0.001. The validated model was able to adequately predict the dynamics of each variable, which were verified by experimental observations. Subsequently, batch, fed-batch, combined batch/continuous, single-stage, and multi-stage continuous bioreactors were investigated through simulations, testing operational variables that influence the arsenic removal capacity, such as inoculum, ion concentration, dilution rate, and seeding. A comparative basis was then established to identify the bioreactor setups that enhance the arsenic immobilization as a bioscorodite. Single-stage and cascade bioreactors had high arsenic precipitation rates (up to 3.2 g L<sup>−1</sup> d<sup>−1</sup>) and crystal sizes around ∼150 μm. Results showed that three reactors connected in series were able to precipitate 87 % arsenic with a high fed concentration (6.2 g L<sup>−1</sup>), while a higher number of serial reactors may increase conversion but affect negatively the practicality and feasibility of the system. Combined batch/continuous scheme was useful to obtain large crystal sizes, up to 225 μm. These findings underscore the effectiveness of a model-based design for bioscorodite crystallization process, providing a promising and scalable solution for arsenic removal from industrial effluents.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106531"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000969","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic removal from water is still a challenge to overcome, and the biologically induced formation of scorodite offers an effective approach for treating arsenic-containing effluents from the metallurgical industry. This paper presents a model-based analysis of the dynamics of the overall bioscorodite process under different bioreactor schemes. For this purpose, a modified model was experimentally validated obtaining 0.87 < R2 < 0.99 for all variables with p-values <0.001. The validated model was able to adequately predict the dynamics of each variable, which were verified by experimental observations. Subsequently, batch, fed-batch, combined batch/continuous, single-stage, and multi-stage continuous bioreactors were investigated through simulations, testing operational variables that influence the arsenic removal capacity, such as inoculum, ion concentration, dilution rate, and seeding. A comparative basis was then established to identify the bioreactor setups that enhance the arsenic immobilization as a bioscorodite. Single-stage and cascade bioreactors had high arsenic precipitation rates (up to 3.2 g L−1 d−1) and crystal sizes around ∼150 μm. Results showed that three reactors connected in series were able to precipitate 87 % arsenic with a high fed concentration (6.2 g L−1), while a higher number of serial reactors may increase conversion but affect negatively the practicality and feasibility of the system. Combined batch/continuous scheme was useful to obtain large crystal sizes, up to 225 μm. These findings underscore the effectiveness of a model-based design for bioscorodite crystallization process, providing a promising and scalable solution for arsenic removal from industrial effluents.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.