Arsenic precipitation and bioscorodite crystallization from acidic metallurgical wastewater under different bioreactor schemes: In-silico performance analysis

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Evelyn Gaxiola-Muñiz , Ricardo Aguilar-López , Sergio A. Medina-Moreno , Edgar N. Tec-Caamal
{"title":"Arsenic precipitation and bioscorodite crystallization from acidic metallurgical wastewater under different bioreactor schemes: In-silico performance analysis","authors":"Evelyn Gaxiola-Muñiz ,&nbsp;Ricardo Aguilar-López ,&nbsp;Sergio A. Medina-Moreno ,&nbsp;Edgar N. Tec-Caamal","doi":"10.1016/j.hydromet.2025.106531","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic removal from water is still a challenge to overcome, and the biologically induced formation of scorodite offers an effective approach for treating arsenic-containing effluents from the metallurgical industry. This paper presents a model-based analysis of the dynamics of the overall bioscorodite process under different bioreactor schemes. For this purpose, a modified model was experimentally validated obtaining 0.87 &lt; R<sup>2</sup> &lt; 0.99 for all variables with <em>p</em>-values &lt;0.001. The validated model was able to adequately predict the dynamics of each variable, which were verified by experimental observations. Subsequently, batch, fed-batch, combined batch/continuous, single-stage, and multi-stage continuous bioreactors were investigated through simulations, testing operational variables that influence the arsenic removal capacity, such as inoculum, ion concentration, dilution rate, and seeding. A comparative basis was then established to identify the bioreactor setups that enhance the arsenic immobilization as a bioscorodite. Single-stage and cascade bioreactors had high arsenic precipitation rates (up to 3.2 g L<sup>−1</sup> d<sup>−1</sup>) and crystal sizes around ∼150 μm. Results showed that three reactors connected in series were able to precipitate 87 % arsenic with a high fed concentration (6.2 g L<sup>−1</sup>), while a higher number of serial reactors may increase conversion but affect negatively the practicality and feasibility of the system. Combined batch/continuous scheme was useful to obtain large crystal sizes, up to 225 μm. These findings underscore the effectiveness of a model-based design for bioscorodite crystallization process, providing a promising and scalable solution for arsenic removal from industrial effluents.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106531"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000969","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic removal from water is still a challenge to overcome, and the biologically induced formation of scorodite offers an effective approach for treating arsenic-containing effluents from the metallurgical industry. This paper presents a model-based analysis of the dynamics of the overall bioscorodite process under different bioreactor schemes. For this purpose, a modified model was experimentally validated obtaining 0.87 < R2 < 0.99 for all variables with p-values <0.001. The validated model was able to adequately predict the dynamics of each variable, which were verified by experimental observations. Subsequently, batch, fed-batch, combined batch/continuous, single-stage, and multi-stage continuous bioreactors were investigated through simulations, testing operational variables that influence the arsenic removal capacity, such as inoculum, ion concentration, dilution rate, and seeding. A comparative basis was then established to identify the bioreactor setups that enhance the arsenic immobilization as a bioscorodite. Single-stage and cascade bioreactors had high arsenic precipitation rates (up to 3.2 g L−1 d−1) and crystal sizes around ∼150 μm. Results showed that three reactors connected in series were able to precipitate 87 % arsenic with a high fed concentration (6.2 g L−1), while a higher number of serial reactors may increase conversion but affect negatively the practicality and feasibility of the system. Combined batch/continuous scheme was useful to obtain large crystal sizes, up to 225 μm. These findings underscore the effectiveness of a model-based design for bioscorodite crystallization process, providing a promising and scalable solution for arsenic removal from industrial effluents.

Abstract Image

不同生物反应器方案下酸性冶金废水中的砷沉淀和生物云母结晶:硅性能分析
从水中去除砷仍然是一个需要克服的挑战,而生物诱导形成铁球石为处理冶金工业含砷废水提供了一种有效的方法。本文提出了一个基于模型的动态分析的整体生物云母过程在不同的生物反应器方案。为此,对修正模型进行了实验验证,得到0.87 <;R2 & lt;p值为<;0.001的所有变量均为0.99。验证后的模型能够充分预测各变量的动态,并通过实验观察进行了验证。随后,通过模拟研究了间歇、补料间歇、间歇/连续组合、单级和多级连续生物反应器,测试了影响砷去除能力的操作变量,如接种量、离子浓度、稀释率和播种。然后建立了一个比较基础,以确定生物反应器设置,以提高砷作为生物污泥的固定化。单级和梯级生物反应器具有较高的砷沉淀率(高达3.2 g L−1 d−1),晶体尺寸约为~ 150 μm。结果表明,3个串联反应器可在高进料浓度(6.2 g L−1)下沉淀87%的砷,较高的串联反应器数量可能会提高转化率,但不利于系统的实用性和可行性。间歇式/连续式组合方案可获得大尺寸晶体,最高可达225 μm。这些发现强调了基于模型设计的生物蛭石结晶过程的有效性,为工业废水中的砷去除提供了一种有前途的可扩展解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信