Pavel Raschman, Ľuboš Popovič, Maryna Kyslytsyna, Gabriel Sučik
{"title":"Modelling the leaching behaviour and particle-size distribution dynamics of poly-disperse particulate solids in a batch reactor","authors":"Pavel Raschman, Ľuboš Popovič, Maryna Kyslytsyna, Gabriel Sučik","doi":"10.1016/j.hydromet.2025.106532","DOIUrl":null,"url":null,"abstract":"<div><div>A material-balance model for the leaching of poly-disperse particulate solids, combining the particle size distribution (PSD) and the shrinking particle model (SPM), has been proposed. This model was applied to the leaching of crude natural magnesite (CNM) with dilute HCl solutions. A CNM sample with wide PSD was used to determine the values of apparent reaction order (0.31) and activation energy (51.5 kJ mol<sup>−1</sup>) from measured data, and to develop a simulation model. Another CNM sample, with identical chemical and phase composition but different PSD, was subsequently used to experimentally investigate how the degree of conversion and PSD change with the leaching time, and to validate the simulation model. Comparison of the experimental and simulation results showed that (a) the kinetic parameter values obtained by the proposed method characterise the intrinsic chemical reaction on the liquid-solid phase interface, regardless of the PSD; and (b) the proposed model can predict how the degree of conversion and PSD of a poly-disperse particulate solid change during the leaching in a batch reactor.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106532"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000970","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A material-balance model for the leaching of poly-disperse particulate solids, combining the particle size distribution (PSD) and the shrinking particle model (SPM), has been proposed. This model was applied to the leaching of crude natural magnesite (CNM) with dilute HCl solutions. A CNM sample with wide PSD was used to determine the values of apparent reaction order (0.31) and activation energy (51.5 kJ mol−1) from measured data, and to develop a simulation model. Another CNM sample, with identical chemical and phase composition but different PSD, was subsequently used to experimentally investigate how the degree of conversion and PSD change with the leaching time, and to validate the simulation model. Comparison of the experimental and simulation results showed that (a) the kinetic parameter values obtained by the proposed method characterise the intrinsic chemical reaction on the liquid-solid phase interface, regardless of the PSD; and (b) the proposed model can predict how the degree of conversion and PSD of a poly-disperse particulate solid change during the leaching in a batch reactor.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.