Choline chloride-lactic acid-ascorbic acid (ChCl-LA-AA) based green deep eutectic solvent for leaching LiMn2O4 cathode material of spent Li-ion batteries
IF 4.8 2区 材料科学Q1 METALLURGY & METALLURGICAL ENGINEERING
Jasreen Kaur Jasmel Singh , Masud Rana , Md Ishtiaq Hossain Khan , Young Tae Jo, Jeong-Hun Park
{"title":"Choline chloride-lactic acid-ascorbic acid (ChCl-LA-AA) based green deep eutectic solvent for leaching LiMn2O4 cathode material of spent Li-ion batteries","authors":"Jasreen Kaur Jasmel Singh , Masud Rana , Md Ishtiaq Hossain Khan , Young Tae Jo, Jeong-Hun Park","doi":"10.1016/j.hydromet.2025.106529","DOIUrl":null,"url":null,"abstract":"<div><div>The application of lithium manganese oxide (LMO) as a cathode material in Li-ion batteries (LIBs) is increasing due to its affordability, safety, nontoxicity, and high energy storage capabilities. Although its use in electric vehicles (EVs) and portable devices is proliferating, research on recycling valuable metals from spent batteries of this type remains limited. Therefore, this study investigates the recycling of lithium (Li) and manganese (Mn) from spent LiMn<sub>2</sub>O<sub>4</sub> cathode materials using a choline chloride and lactic acid (ChCl-LA) deep eutectic solvent (DES) in the presence of various reducing agents such as ascorbic acid (AA), glucose, and formic acid (FA). The compositions of the spent cathode LiMn<sub>2</sub>O<sub>4</sub> material, solid residue, and the leachate obtained post-leaching were analyzed using ICP-OES, XPS, SEM-EDS, and XRD analyses. Results indicated that about 100 % leaching efficiencies of both Li and Mn metals were achieved at 90 °C, 1 h, 20 g/L solid-to-liquid ratio and a 1:2:1 M ratio of ChCl-LA-AA. The XRD analysis results showed the presence of minor peaks of manganese oxide in the solid residues obtained from glucose and FA leaching, while the LiMn<sub>2</sub>O<sub>4</sub> peaks are absent after the treatment of AA, confirming the effective extraction of metallic elements. Meanwhile, the SEM-EDS analysis showed the raw LiMn<sub>2</sub>O<sub>4</sub> material had agglomerated nanoparticles, while the solid residues exhibited increased porosity and reduced Mn content (26.1 wt% for glucose and 23.9 wt% for FA). The solid residue obtained after leaching with AA showed a significant increase in carbon content (82.1 %) and a decrease in Mn (1.42 %). The XPS spectra further confirmed the reduction of manganese (III) or manganese (IV) oxidation states into manganese (II) state and almost complete leaching of Mn and Li. Finally, a detailed mechanism for Mn and Li leaching from the spent LiMn<sub>2</sub>O<sub>4</sub> was proposed. The recycling process applied in this study is shown to be feasible and promising for broader application.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106529"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000945","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The application of lithium manganese oxide (LMO) as a cathode material in Li-ion batteries (LIBs) is increasing due to its affordability, safety, nontoxicity, and high energy storage capabilities. Although its use in electric vehicles (EVs) and portable devices is proliferating, research on recycling valuable metals from spent batteries of this type remains limited. Therefore, this study investigates the recycling of lithium (Li) and manganese (Mn) from spent LiMn2O4 cathode materials using a choline chloride and lactic acid (ChCl-LA) deep eutectic solvent (DES) in the presence of various reducing agents such as ascorbic acid (AA), glucose, and formic acid (FA). The compositions of the spent cathode LiMn2O4 material, solid residue, and the leachate obtained post-leaching were analyzed using ICP-OES, XPS, SEM-EDS, and XRD analyses. Results indicated that about 100 % leaching efficiencies of both Li and Mn metals were achieved at 90 °C, 1 h, 20 g/L solid-to-liquid ratio and a 1:2:1 M ratio of ChCl-LA-AA. The XRD analysis results showed the presence of minor peaks of manganese oxide in the solid residues obtained from glucose and FA leaching, while the LiMn2O4 peaks are absent after the treatment of AA, confirming the effective extraction of metallic elements. Meanwhile, the SEM-EDS analysis showed the raw LiMn2O4 material had agglomerated nanoparticles, while the solid residues exhibited increased porosity and reduced Mn content (26.1 wt% for glucose and 23.9 wt% for FA). The solid residue obtained after leaching with AA showed a significant increase in carbon content (82.1 %) and a decrease in Mn (1.42 %). The XPS spectra further confirmed the reduction of manganese (III) or manganese (IV) oxidation states into manganese (II) state and almost complete leaching of Mn and Li. Finally, a detailed mechanism for Mn and Li leaching from the spent LiMn2O4 was proposed. The recycling process applied in this study is shown to be feasible and promising for broader application.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.