Jiayu Mi , Xingyu Chen , Ailiang Chen , Xuheng Liu , Jiangtao Li , Lihua He , Fenglong Sun , Zhongwei Zhao
{"title":"An investigation into the sodium molybdate leaching of molybdenum calcine","authors":"Jiayu Mi , Xingyu Chen , Ailiang Chen , Xuheng Liu , Jiangtao Li , Lihua He , Fenglong Sun , Zhongwei Zhao","doi":"10.1016/j.hydromet.2025.106553","DOIUrl":null,"url":null,"abstract":"<div><div>The ammonia leaching-purification-crystallization process is the conventional treatment method of molybdenum calcine. This process generates large amounts of nitrogen-containing wastewater and exhaust gases. Based on the self-coordination principle of Mo, where MoO<sub>3</sub> with low-polymerization ability combines with Na<sub>2</sub>MoO<sub>4</sub> into highly polymerized polymolybdates, this study proposes a novel, green leaching process using Na<sub>2</sub>MoO<sub>4</sub> for the selective extraction of Mo from molybdenum calcine. Leaching conditions were optimized, and the reaction mechanism was elucidated through the identification of solids using XRD, EDS mapping, XPS, and Raman spectroscopy. Results show that under optimal conditions, the leaching efficiency reached 98.6 %. Molybdenum from MoO<sub>3</sub>, PbMoO<sub>4</sub>, and FeMoO<sub>4</sub> phases in the calcine was effectively extracted, while Fe and Pb oxides remained in the leach residue as PbO and Fe<sub>2</sub>O<sub>3</sub>·1.2H<sub>2</sub>O, respectively. In the leachate, Mo existed primarily as Mo<sub>7</sub>O<sub>24</sub><sup>6−</sup>, HMo<sub>7</sub>O<sub>24</sub><sup>5−</sup>, and MoO<sub>4</sub><sup>2−</sup>. This study presents an environmentally friendly process for extracting Mo from molybdenum calcine.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106553"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001185","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The ammonia leaching-purification-crystallization process is the conventional treatment method of molybdenum calcine. This process generates large amounts of nitrogen-containing wastewater and exhaust gases. Based on the self-coordination principle of Mo, where MoO3 with low-polymerization ability combines with Na2MoO4 into highly polymerized polymolybdates, this study proposes a novel, green leaching process using Na2MoO4 for the selective extraction of Mo from molybdenum calcine. Leaching conditions were optimized, and the reaction mechanism was elucidated through the identification of solids using XRD, EDS mapping, XPS, and Raman spectroscopy. Results show that under optimal conditions, the leaching efficiency reached 98.6 %. Molybdenum from MoO3, PbMoO4, and FeMoO4 phases in the calcine was effectively extracted, while Fe and Pb oxides remained in the leach residue as PbO and Fe2O3·1.2H2O, respectively. In the leachate, Mo existed primarily as Mo7O246−, HMo7O245−, and MoO42−. This study presents an environmentally friendly process for extracting Mo from molybdenum calcine.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.