{"title":"基于铁载体的金属生物回收技术的进展","authors":"Nazanin Bahaloo-Horeh, Farzaneh Sadri","doi":"10.1016/j.hydromet.2025.106554","DOIUrl":null,"url":null,"abstract":"<div><div>Siderophores are low-molecular-weight, metal-chelating biometabolites that exhibit the ability to bind iron and other metal ions with high selectivity. Over 500 structurally distinct siderophores have been identified, offering diverse coordination mechanisms for potential metal complexation. Recent research has investigated their use in extracting metals from both primary and secondary sources, including ores, mine tailings, electronic waste, and industrial effluents—primarily under laboratory conditions. This review critically examines reported findings across various metal–siderophore systems, evaluating factors such as leaching parameters, synergistic use with co-lixiviants, and integration into hybrid approaches. However, no commercial applications currently exist, and significant economic and technical barriers—particularly high production costs and scalability challenges—limit practical viability. This review aims to consolidate current scientific understanding, highlight existing limitations, and outline realistic future research directions focused on overcoming technical and economic constraints to broader implementation.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"238 ","pages":"Article 106554"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in siderophore-based technologies for metal biorecovery\",\"authors\":\"Nazanin Bahaloo-Horeh, Farzaneh Sadri\",\"doi\":\"10.1016/j.hydromet.2025.106554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Siderophores are low-molecular-weight, metal-chelating biometabolites that exhibit the ability to bind iron and other metal ions with high selectivity. Over 500 structurally distinct siderophores have been identified, offering diverse coordination mechanisms for potential metal complexation. Recent research has investigated their use in extracting metals from both primary and secondary sources, including ores, mine tailings, electronic waste, and industrial effluents—primarily under laboratory conditions. This review critically examines reported findings across various metal–siderophore systems, evaluating factors such as leaching parameters, synergistic use with co-lixiviants, and integration into hybrid approaches. However, no commercial applications currently exist, and significant economic and technical barriers—particularly high production costs and scalability challenges—limit practical viability. This review aims to consolidate current scientific understanding, highlight existing limitations, and outline realistic future research directions focused on overcoming technical and economic constraints to broader implementation.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"238 \",\"pages\":\"Article 106554\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X25001197\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001197","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Advancements in siderophore-based technologies for metal biorecovery
Siderophores are low-molecular-weight, metal-chelating biometabolites that exhibit the ability to bind iron and other metal ions with high selectivity. Over 500 structurally distinct siderophores have been identified, offering diverse coordination mechanisms for potential metal complexation. Recent research has investigated their use in extracting metals from both primary and secondary sources, including ores, mine tailings, electronic waste, and industrial effluents—primarily under laboratory conditions. This review critically examines reported findings across various metal–siderophore systems, evaluating factors such as leaching parameters, synergistic use with co-lixiviants, and integration into hybrid approaches. However, no commercial applications currently exist, and significant economic and technical barriers—particularly high production costs and scalability challenges—limit practical viability. This review aims to consolidate current scientific understanding, highlight existing limitations, and outline realistic future research directions focused on overcoming technical and economic constraints to broader implementation.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.