HydrometallurgyPub Date : 2024-07-20DOI: 10.1016/j.hydromet.2024.106365
{"title":"3D imaging of leach columns from Rochester mine for pore network characteristics and permeability simulated by the Lattice Boltzmann Method","authors":"","doi":"10.1016/j.hydromet.2024.106365","DOIUrl":"10.1016/j.hydromet.2024.106365","url":null,"abstract":"<div><p>In heap leach operations, metal recovery is fundamentally controlled by the ore's particle size distribution (PSD), which determines mineral exposure characteristics, the rate of leaching reactions, and fluid flow phenomena. A fluent circulation of solution through the heap is important for successful leach plant operation. The pore networks inside 6-in. diameter leach columns from the Rochester mine were scanned by X-ray Computed Tomography (XCT) at a voxel size of 100 μm, to estimate the permeability by Lattice Boltzmann Method (LBM). The bottom sections of 6-in. columns had much less porosity and corresponding permeability than the top sections. PSD of the bottom and top sections showed no migration of fines, and gravity compression reduced the bottom sections' permeability. The pore networks inside 4-in. diameter leach columns with controlled PSD were scanned by XCT at a higher resolution with a voxel size of 68 μm. In addition to the large particles (rocks) and pore network, another phase of agglomerated fines from local fluid movement was identified. This phase of agglomerated fines can overwhelm the volume of the pore network inside leach columns and thus reduce the permeability, leading to possible ponding issues in the heap.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-19DOI: 10.1016/j.hydromet.2024.106367
{"title":"Application of clean oxidation technology using H2O2 for simultaneous removal of sulfur and organic substances in the Bayer process","authors":"","doi":"10.1016/j.hydromet.2024.106367","DOIUrl":"10.1016/j.hydromet.2024.106367","url":null,"abstract":"<div><p>The harmful effects of sulfur and organic substances pose constraints on the green and sustainable development of the Bayer process for alumina production. This research aims to develop a method that utilizes H<sub>2</sub>O<sub>2</sub> to remove sulfur and organic substances during the digestion stage of bauxite, based on the mineralogical investigation of sulfur and organic substance. The extent of removal of S<sup>2−</sup> and total organic carbon reached 95.6% and 68.0%, respectively, under most suitable conditions of 12% H<sub>2</sub>O<sub>2</sub> dosage, temperature of 533 K, and duration of 80 min. Based on thermodynamic calculations, it is suggested that S<sup>2−</sup> is oxidized to SO<sub>4</sub><sup>2−</sup>. Additionally, the free radical reaction mechanism of organic substances in H<sub>2</sub>O<sub>2</sub> wet oxidation of Bayer liquor is proposed. The results confirm that this method does not introduce any impurities and does not have any impact on the digestion efficiency of alumina and the Bayer process.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-15DOI: 10.1016/j.hydromet.2024.106362
{"title":"A zero-liquid discharge process to recover all critical metals from spent NCM111 cathode material of end-of-life lithium-ion batteries: statistically optimized leaching with formic acid and in-situ crystallization","authors":"","doi":"10.1016/j.hydromet.2024.106362","DOIUrl":"10.1016/j.hydromet.2024.106362","url":null,"abstract":"<div><p>A green chemistry process has been developed to recycle cathode material from end-of-life lithium ion batteries. NCM111 (LiNi<sub>1/3</sub>Co<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub>) was completely leached with 13 M formic acid to produce two groups of salts with different solubilities: sparingly soluble cobalt, manganese, and nickel (CMN) formates and highly soluble lithium formate. During leaching, CMN formate salts exceeded their solubility limit in the pregnant leach solution (PLS) and crystallized. Mixed CMN formate salts were recovered by filtering the PLS. Lithium was completely recovered by evaporating the filtered PLS then thermally decomposing the lithium formate obtained in air to lithium carbonate. The purity of the lithium carbonate was 98.1 wt%.</p><p>The leaching process was optimized through response surface methodology experiments. The minimum time required to completely leach NCM111 with 13 M formic acid was 30.8 h. Optimum leaching conditions were L/S = 2.81 mL/g (equivalent to S/L = 356 g/L) and <em>T</em> = 95 °C. During leaching, 98% of CMN formate salts exceeded their solubility limit and crystallized from the PLS.</p><p>The recycling process is simple and generates no liquid or solid waste products. The only reagent is 13 M formic acid. The only by-products are water vapour, which can be condensed and reused, and carbon dioxide gas.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001026/pdfft?md5=b301022844b383c1c0502dc7e5aa2064&pid=1-s2.0-S0304386X24001026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-14DOI: 10.1016/j.hydromet.2024.106364
{"title":"The role of oxidants in the intensive cyanidation of gold. II. Sulfide mineral oxidation","authors":"","doi":"10.1016/j.hydromet.2024.106364","DOIUrl":"10.1016/j.hydromet.2024.106364","url":null,"abstract":"<div><p>In the intensive cyanidation of gravity gold concentrates, sodium m-nitrobenzene sulfonate (NBS) is often used to supplement dissolved oxygen as the oxidant in the process. A previous paper presented the results of a largely electrochemical study of the behaviour of NBS during cyanidation of gold. The results confirmed that NBS acts as an oxidant in the cyanidation of gold and that the mixed potential model can be applied to describe the mechanism of its action. This paper explores the corresponding oxidation of sulfide minerals, that inevitably are contained in gold concentrates, by either dissolved oxygen or NBS. Using electrochemical techniques it was found that dissolved oxygen is effective in the oxidation of several sulfide minerals at pH values between 9 and 11. The effect of cyanide on both the anodic and cathodic processes has been studied. NBS has been found to be ineffective as an oxidant for all minerals tested except galena, even in the presence of cyanide.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X2400104X/pdfft?md5=a231e73922b31951f2473790632af3ea&pid=1-s2.0-S0304386X2400104X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-14DOI: 10.1016/j.hydromet.2024.106363
{"title":"The role of oxidants in the intensive cyanidation of gold. 1. Gold dissolution","authors":"","doi":"10.1016/j.hydromet.2024.106363","DOIUrl":"10.1016/j.hydromet.2024.106363","url":null,"abstract":"<div><p>In the intensive cyanidation of gravity gold concentrates, sodium m-nitrobenzene sulfonate (NBS) is often used to supplement dissolved oxygen as the oxidant in the process. This paper presents the results of a largely electrochemical study of the behaviour of NBS during cyanidation. The results have confirmed that NBS acts as an oxidant in the cyanidation of gold and that the mixed potential model can be applied to describe the mechanism of its action.</p><p>The mixed potential is a good initial indicator of the rate of gold dissolution and, as expected, the anodic dissolution of pure gold in cyanide solutions is characterized by passivation at potentials above about −0.35 <em>V</em>.</p><p>The reduction of oxygen under the conditions of the present study occurs in two 2-electron steps with peroxide as an intermediate. Dissolution of gold occurs at potentials in the diffusion-controlled region for the first step. The cathodic reduction of NBS occurs in the same potential region as the reduction of oxygen. The reaction is first order in the concentration of NBS and is largely independent of the pH. The stoichiometry of the reaction involves six moles of gold per mole of NBS confirming that the amine is the final product of reduction of NBS.</p><p>Rates of gold dissolution in various solutions have been measured using a calibrated linear polarisation method. The rate increases approximately linearly with increasing NBS concentration and is independent of pH. The rate in 0.5 g/L NBS is approximately the same as in oxygenated solutions.</p><p>A relatively simple titration has been adapted for use in determining NBS concentrations.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001038/pdfft?md5=b4066a634b80387e78295882e22d3033&pid=1-s2.0-S0304386X24001038-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-10DOI: 10.1016/j.hydromet.2024.106360
{"title":"Recovery of Pt, Pd, and Rh from spent automotive catalysts through combined chloride leaching and ion exchange: A review","authors":"","doi":"10.1016/j.hydromet.2024.106360","DOIUrl":"10.1016/j.hydromet.2024.106360","url":null,"abstract":"<div><p>Three platinum group metals (PGMs), platinum (Pt), palladium (Pd), and rhodium (Rh), are key components in automotive catalytic convertors, playing a pivotal role in controlling harmful emissions. The recycling and recovery of Pt, Pd, and Rh from spent automotive catalysts (SACs) have gained increasing attention as essential measures to mitigate resource depletion, supply risks, and environmental impacts. Due to the growing demand for automobiles and increasingly stricter environmental regulations, a substantial amount of spent automotive catalysts is generated annually, leading to increased interest in their efficient recycling and recovery of the PGMs they contain. Hydrometallurgical processes, particularly chloride leaching and ion exchange, have emerged as promising methods for efficient PGM extraction and separation from these discarded catalysts.</p><p>This review includes a critical examination of recent advances and innovations in both chloride leaching and ion exchange methods, highlighting their effectiveness in terms of Pt, Pd, and Rh recyclability and recovery efficiency from spent catalysts. The study offers valuable insights into the efficacy of their recycling from SACs through various processes. The importance of investigating the solution chemistry of PGMs in chloride media is highlighted and the leaching of SACs has been explored using various chloride media, including AlCl<sub>3</sub>, NaCl, CaCl<sub>2</sub>, MgCl, and NH<sub>4</sub>Cl, alongside a range of inorganic and organic leaching agents such as HCl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, acetic acid, citric acid, and oxidizing agents like H<sub>2</sub>O<sub>2</sub>, NaClO, NaClO<sub>3</sub>, Fe<sup>3+</sup>, Cl<sub>2</sub>, and Cu<sup>2+</sup>. This work is critically reviewed, examining the influence of key parameters investigated on the leaching efficiency of PGMs, such as HCl, Cl<sup>−</sup>, and oxidizing concentrations, temperature, solid-to-liquid ratio (S/L), particle size, and leaching time. Furthermore, it evaluates the effectiveness of pretreatment techniques such as calcination, salt roasting, and pre-reduction methods involving high temperatures, hydrogen gas flow, formic acid, hydrazine hydrate, and Zn-vapor treatments. The review then turns to the efficacy of the ion exchange method, utilizing a diverse range of anion exchange resins for the selective adsorption of PGMs as well as various elution reagents for the selective desorption of PGMs from loaded resins, aiming to recover them selectively from chloride leach solutions. Therefore, this study seeks to contribute to the development of strategies for recycling and reusing PGMs from SACs, with a view to reducing the industry's dependence on primary raw materials and promoting principles of the circular economy.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001002/pdfft?md5=40de6c004bb02d98fcaba694a8e8dd60&pid=1-s2.0-S0304386X24001002-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HydrometallurgyPub Date : 2024-07-08DOI: 10.1016/j.hydromet.2024.106361
{"title":"Design of a continuous ion exchange process in battery metals recycling: From single column experiments towards a simulated moving bed configuration","authors":"","doi":"10.1016/j.hydromet.2024.106361","DOIUrl":"10.1016/j.hydromet.2024.106361","url":null,"abstract":"<div><p>In hydrometallurgical recovery of LIB metals, ion exchange (IX) has hitherto played only a minor role. Separation experiments were conducted in single laboratory-scale IX columns with the aim of laying the foundation for a continuously operated multicolumn IX process similar to a simulated moving bed (SMB) configuration. In this study, the initial process developed earlier was improved by reducing the number of process steps and external streams. The desorption step with oxalate solution was examined in single-column batch experiments to ensure complete desorption of iron in the proposed continuous multicolumn IX process. Additionally, the volume flowrates were adjusted to achieve acceptable switch times of 25 min in an SMB configuration. It was found that the bead size of the resin is a critical factor in IX recovery of battery metals. The raffinate purity for the case of processing 2.5 BV lithium-ion battery waste leachate (LIBWL) improved from 97.2 % to 99.8 % when the resin bead size was reduced from 0.55 ± 0.05 mm to 0.4 ± 0.04 mm and a narrower bead size distribution. The LIBWL feed concentration was varied to mimic the dilution of fresh feed in an SMB set-up. The percentage recovery of Co and Ni decreased from 93.7 % and 96.6 % to 80.8 % and 89.4 %, respectively, when the LIBWL was diluted. This was a result of the decrease in concentration of impurity metals in the feed. Less impurity metals were sorbed and consequently, more ion exchange sites were available for the sorption of the target metals, which enhanced the retention of Co and Ni. The results were used to develop an IX column operation strategy and to suggest an initial SMB design. The multicolumn configuration presented in this work offers great potential for continuous production of high-purity Li, Ni and Co-containing raffinate (> 99.5 %).</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001014/pdfft?md5=c7b5a37071e50f17419103cef06821e2&pid=1-s2.0-S0304386X24001014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of processes in Cu-ore heap leaching using Cu isotopes and leachate chemistry at Tschudi mine, northern Namibia","authors":"Ondra Sracek , Vojtěch Ettler , Martin Mihaljevič , Bohdan Kříbek , Ben Mapani , Vít Penížek , Tereza Zádorová , Aleš Vaněk","doi":"10.1016/j.hydromet.2024.106356","DOIUrl":"https://doi.org/10.1016/j.hydromet.2024.106356","url":null,"abstract":"<div><p>Copper isotopic fractionation (in δ<sup>65</sup>Cu) and leachate characterization were studied in the context of heap leaching at the Tschudi copper mine in northern Namibia. The leached solution is of Mg-SO<sub>4</sub> type with high Al and Fe concentrations. The source of Mg and Al in the leachate can be from the alteration of micas such as Mg-bearing muscovite confirmed by X-ray diffraction and scanning electron microscopy; however, the source of Mg cannot be determined with certainty. The principal secondary minerals identified in the leached ore are gypsum and jarosite. The value of pH in leachate is ∼1.21 and the concentration of dissolved Cu, occurring mostly as CuSO<sub>4</sub><sup>0</sup> and Cu<sup>2+</sup>, is about 2 g/L. In comparison with unleached ore (avg. δ<sup>65</sup>Cu −1.47 ‰), leached ore exhibits lighter isotopic values (avg. δ<sup>65</sup>Cu −6.01 ‰) with apparent isotopic fractionation Δ<sup>65</sup>Cu<sub>leached ore-unleached ore</sub> of about −4.54 ‰. In contrast, there is isotopic enrichment of leachate in heavier <sup>65</sup>Cu isotope (leachate δ<sup>65</sup>Cu 0.34 ‰) with apparent isotopic fractionation Δ<sup>65</sup>Cu<sub>leachate-unleached ore</sub> value of +1.81 ‰. These results are in good agreement with Cu isotopic fractionation and depletion in heavier <sup>65</sup>Cu isotope reported for dissolution experiments in laboratory and groundwater linked to the porphyry copper ore deposits around the world. The leaching of heaps can be considered an analogy of upper part of gossans, but here the supergene enrichment zone is missing due to extremely low pH and oxidizing conditions.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24000963/pdfft?md5=11018e4a539a5742cc9696c72c81f229&pid=1-s2.0-S0304386X24000963-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variations in pore structures and permeabilities of ion adsorption rare earth ores during simulated in-situ leaching: Effect of newly formed clay particles and their swelling","authors":"Lian Zhang , BaoPing Wen , Lingkang Chen , Haixia Chen , Kaixing Wu","doi":"10.1016/j.hydromet.2024.106357","DOIUrl":"https://doi.org/10.1016/j.hydromet.2024.106357","url":null,"abstract":"<div><p>In-situ leaching is essential for mining rare earth elements (REEs) from ion-adsorption rare earth (RE) ores. The efficiency of RE mining is dependent on the permeabilities of ion-adsorption RE ores, and the permeabilities are controlled by their pore structures. However, the current understanding of the pore structures and permeabilities of the RE ores during leaching is limited, particularly their dynamic variations, the controlling roles of different pore structure parameters on the permeability, the roles of the influencing factors and the mechanisms causing the variations. To investigate the above-mentioned issues, we conducted an experimental study of simulated in-situ leaching on undisturbed ion-adsorption RE ore samples under different conditions via constant waterhead permeability tests. The leaching conditions included leaching time, concentration and waterhead of the (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> solution. Three-dimensional (3-D) pore structures of the RE ores before, during, and after leaching were constructed via X-ray computed tomography, and their pore structure parameters were measured using 3-D image computation. It was observed that the dynamic variations in both the pore structure parameters and permeability coefficients of the RE ores occurred in three distinct stages: rapid reduction, less rapid reduction, and little reduction. The experimental results also revealed that the permeability coefficients of the RE ores were primarily dependent on the average coordination number among the seven pore structure parameters examined, and that the pore throats larger than 30 μm in diameter served as the most effective seepage channels within the RE ores. The waterhead of the leaching solution had a stronger influence on the variations in pore structures and permeabilities compared to that of the concentration. Analysis of the particle/aggregate size distribution and mineralogical compositions of the RE ores before and after leaching indicated that the decreases in the pore structure parameters and permeabilities were largely attributed to clogging of the pore throats and pores by migrated and newly formed clays, as well as swelling of the latter. The newly formed clays were the products of the decomposition of K-feldspar and mica resulting from chemical reactions with the leaching solution. The clays from the two sources occurred in disaggregated and aggregated forms. The results of this study provide an important reference for the mining of RE ores via leaching.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gold recovery from roasted refractory gold concentrate through cyclic extraction using MnO2-assisted thiocyanate leaching and cementation with zinc powder","authors":"Weiyao Li, Bo Liu, Jiajia Wu, Wei Liu, Fen Jiao, Wenqing Qin","doi":"10.1016/j.hydromet.2024.106359","DOIUrl":"https://doi.org/10.1016/j.hydromet.2024.106359","url":null,"abstract":"<div><p>Cyanidation has long served as the industrial standard in the gold industry, necessitating heightened attention to cyanide management owing to its inherent toxicity. This study developed a novel MnO<sub>2</sub>-assisted thiocyanate leaching system as an alternative to cyanide. The sample was generated from a refractory gold concentrate processed by roasting, containing 54.4 g/t gold with iron oxide and quartz as the major mineral phases. Within the framework of the novel system, gold recovery was investigated in terms of gold association, recovery behavior, thermodynamics, and optimization using cyclic extraction protocols. The most suitable leaching conditions were determined as 1.20 mol/L NaSCN, 4.00 mmol/L MnO<sub>2</sub>, pH at 1.00, liquid-to-solid ratio of 4 mL/g, and leaching duration of 24 h, resulting in a maximum gold extraction of 94.8%. Subsequent zinc precipitation facilitated a gold recovery of 99.4% from the leachate. Furthermore, the implementation of a cyclic extraction scheme, coupled with reagent addition to offset consumption, yielded a significant thiocyanate dosage reduction by 75% while maintaining gold recovery. This acidic leaching system yields satisfactory gold recovery with minimized reagent consumption, particularly suited for refractory gold ore that has undergone acidic pretreatment.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}