E. Díaz-Gutiérrez , J. Hernández-Saz , José A. Maldonado Calvo , J.M. Gallardo , A. Paúl
{"title":"Role of arsenic(V) and bismuth in the recovery of antimony by hydrolysis and precipitation from eluates produced during copper electrorefining","authors":"E. Díaz-Gutiérrez , J. Hernández-Saz , José A. Maldonado Calvo , J.M. Gallardo , A. Paúl","doi":"10.1016/j.hydromet.2025.106548","DOIUrl":null,"url":null,"abstract":"<div><div>The recovery of antimony from side stream is challenging due to impurities like arsenic and bismuth which affect extraction efficiency and product quality. This study examines the individual and combined effects of As and Bi on antimony hydrolysis from eluates produced during copper electrorefining. Synthetic and process eluates were analysed to optimise operating conditions and understand impurity interactions. Hydrolysis experiments across pH values (0.25–0.9) revealed an optimal pH range (0.6–0.7) for maximizing antimony recovery (>90 %) in impurity-free conditions. Arsenic reduced the antimony recovery by 8 %–13 %, destabilising precipitates and forming amorphous phases. Bismuth caused a smaller reduction (3 %–7 %) but had a diminished effect in the presence of As, which dominated the system's chemistry. Process eluates exhibited greater variability, particularly in extraction yields, underscoring the need to validate findings based on synthetic solutions against industrial matrices. This study provides insights into optimizing antimony recovery through impurity management and highlights the value of combining the analyses of synthetic and process eluates.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106548"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001136","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The recovery of antimony from side stream is challenging due to impurities like arsenic and bismuth which affect extraction efficiency and product quality. This study examines the individual and combined effects of As and Bi on antimony hydrolysis from eluates produced during copper electrorefining. Synthetic and process eluates were analysed to optimise operating conditions and understand impurity interactions. Hydrolysis experiments across pH values (0.25–0.9) revealed an optimal pH range (0.6–0.7) for maximizing antimony recovery (>90 %) in impurity-free conditions. Arsenic reduced the antimony recovery by 8 %–13 %, destabilising precipitates and forming amorphous phases. Bismuth caused a smaller reduction (3 %–7 %) but had a diminished effect in the presence of As, which dominated the system's chemistry. Process eluates exhibited greater variability, particularly in extraction yields, underscoring the need to validate findings based on synthetic solutions against industrial matrices. This study provides insights into optimizing antimony recovery through impurity management and highlights the value of combining the analyses of synthetic and process eluates.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.