Qiong Ye , Fengshan Yu , Xunwei Ma , Jiashuang Wang , Kaihan Cai , Lincai Wang , Jian-Ping Zou
{"title":"从废汽车催化剂中回收铂族金属的电冶金和机械化学方法","authors":"Qiong Ye , Fengshan Yu , Xunwei Ma , Jiashuang Wang , Kaihan Cai , Lincai Wang , Jian-Ping Zou","doi":"10.1016/j.hydromet.2025.106537","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the escalating scarcity of resources, the practice of recycling waste has emerged as a pivotal strategy for sustainable development. In the present study, an innovative method is introduced to enhance the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs), involving an integrated electrochemical metallurgy process integrating mechanochemical reduction pretreatment and electrochemical leaching. An in-depth exploration on the influences of mechanochemical ball-milling parameters and electrochemical leaching conditions on PGM recovery yielded insightful results. Notably, Zn emerges as a key catalyst to promote the generation of highly reactive PGM particles, facilitate grinding, reduce platinum group metal oxides, and alloy with PGMs. The mechanochemical reduction pretreatment significantly reduces the apparent dissolution activation energies of Pd, Pt, and Rh from 40.1 kJ/mol, 43.7 kJ/mol, and 62.5 kJ/mol to 13.2 kJ/mol, 17.5 kJ/mol, and 22.1 kJ/mol, respectively. Following optimization through orthogonal experiments, the leaching efficiencies of Pd, Pt, and Rh reached exceptional levels: 98.5 %, 98.1 %, and 93.3 %, respectively. This study unveils a highly efficient and practical approach for leaching PGMs from SACs, which is conducive to sustainable resource management.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"237 ","pages":"Article 106537"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrometallurgical and mechanochemical approach for the recovery of platinum group metals from spent automotive catalysts\",\"authors\":\"Qiong Ye , Fengshan Yu , Xunwei Ma , Jiashuang Wang , Kaihan Cai , Lincai Wang , Jian-Ping Zou\",\"doi\":\"10.1016/j.hydromet.2025.106537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the escalating scarcity of resources, the practice of recycling waste has emerged as a pivotal strategy for sustainable development. In the present study, an innovative method is introduced to enhance the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs), involving an integrated electrochemical metallurgy process integrating mechanochemical reduction pretreatment and electrochemical leaching. An in-depth exploration on the influences of mechanochemical ball-milling parameters and electrochemical leaching conditions on PGM recovery yielded insightful results. Notably, Zn emerges as a key catalyst to promote the generation of highly reactive PGM particles, facilitate grinding, reduce platinum group metal oxides, and alloy with PGMs. The mechanochemical reduction pretreatment significantly reduces the apparent dissolution activation energies of Pd, Pt, and Rh from 40.1 kJ/mol, 43.7 kJ/mol, and 62.5 kJ/mol to 13.2 kJ/mol, 17.5 kJ/mol, and 22.1 kJ/mol, respectively. Following optimization through orthogonal experiments, the leaching efficiencies of Pd, Pt, and Rh reached exceptional levels: 98.5 %, 98.1 %, and 93.3 %, respectively. This study unveils a highly efficient and practical approach for leaching PGMs from SACs, which is conducive to sustainable resource management.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"237 \",\"pages\":\"Article 106537\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X25001021\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001021","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
An electrometallurgical and mechanochemical approach for the recovery of platinum group metals from spent automotive catalysts
In response to the escalating scarcity of resources, the practice of recycling waste has emerged as a pivotal strategy for sustainable development. In the present study, an innovative method is introduced to enhance the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs), involving an integrated electrochemical metallurgy process integrating mechanochemical reduction pretreatment and electrochemical leaching. An in-depth exploration on the influences of mechanochemical ball-milling parameters and electrochemical leaching conditions on PGM recovery yielded insightful results. Notably, Zn emerges as a key catalyst to promote the generation of highly reactive PGM particles, facilitate grinding, reduce platinum group metal oxides, and alloy with PGMs. The mechanochemical reduction pretreatment significantly reduces the apparent dissolution activation energies of Pd, Pt, and Rh from 40.1 kJ/mol, 43.7 kJ/mol, and 62.5 kJ/mol to 13.2 kJ/mol, 17.5 kJ/mol, and 22.1 kJ/mol, respectively. Following optimization through orthogonal experiments, the leaching efficiencies of Pd, Pt, and Rh reached exceptional levels: 98.5 %, 98.1 %, and 93.3 %, respectively. This study unveils a highly efficient and practical approach for leaching PGMs from SACs, which is conducive to sustainable resource management.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.