Forum Mathematicum最新文献

筛选
英文 中文
Normalized solutions for the fractional Schrödinger equation with combined nonlinearities 具有组合非线性的分数薛定谔方程的归一化解
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-31 DOI: 10.1515/forum-2023-0424
Shengbing Deng, Qiaoran Wu
{"title":"Normalized solutions for the fractional Schrödinger equation with combined nonlinearities","authors":"Shengbing Deng, Qiaoran Wu","doi":"10.1515/forum-2023-0424","DOIUrl":"https://doi.org/10.1515/forum-2023-0424","url":null,"abstract":"In this paper, we study the normalized solutions for the following fractional Schrödinger equation with combined nonlinearities <jats:disp-formula-group> <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>s</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd /> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mtext>in </m:mtext> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:msub> </m:mstyle> <m:mrow> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>u</m:mi> <m:mn>2</m:mn> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:msup> <m:mi>a</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0161.png\" /> <jats:tex-math>displaystyleleft{begin{aligned} displaystyle{}(-Delta)^{s}u&% displaystyle=lambda u+mulvert urvert^{q-2}u+lvert urvert^{p-2}u&&% displaystylephantom{}text{in }mathbb{R}^{N}, displaystyleint_{mathbb{R}^{N}}u^{2},dx&displaystyle=a^{2},end{aligned}right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> </jats:disp-formula-group> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0263.png\" /> <jats:tex-math>{0<s<1}</jats:tex-math> </jats:alternativ","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"190 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139656308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order 具有无平方阶循环全局群的紧凑平坦流形基群的无穷属
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-31 DOI: 10.1515/forum-2021-0298
Genildo de Jesus Nery
{"title":"Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order","authors":"Genildo de Jesus Nery","doi":"10.1515/forum-2021-0298","DOIUrl":"https://doi.org/10.1515/forum-2021-0298","url":null,"abstract":"In this article, we study the extent to which an <jats:italic>n</jats:italic>-dimensional compact flat manifold with the cyclic holonomy group of square-free order may be distinguished by the finite quotients of its fundamental group. In particular, we display a formula for the cardinality of profinite genus of the fundamental group of an <jats:italic>n</jats:italic>-dimensional compact flat manifold with the cyclic holonomy group of square-free order.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"26 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139656232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The C*-algebra of the Boidol group 布依多尔群的 C* 代数
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-31 DOI: 10.1515/forum-2021-0209
Ying-Fen Lin, Jean Ludwig
{"title":"The C*-algebra of the Boidol group","authors":"Ying-Fen Lin, Jean Ludwig","doi":"10.1515/forum-2021-0209","DOIUrl":"https://doi.org/10.1515/forum-2021-0209","url":null,"abstract":"The Boidol group is the smallest non-<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∗</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2021-0209_eq_0575.png\" /> <jats:tex-math>{ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular exponential Lie group. It is of dimension 4 and its Lie algebra is an extension of the Heisenberg Lie algebra by the reals with the roots 1 and -1. We describe the C*-algebra of the Boidol group as an algebra of operator fields defined over the spectrum of the group. It is the only connected solvable Lie group of dimension less than or equal to 4 whose group C*-algebra had not yet been determined.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"291 2 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139656067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degrees of generalized Kloosterman sums 广义克罗斯特曼和的度数
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-30 DOI: 10.1515/forum-2023-0295
Liping Yang
{"title":"Degrees of generalized Kloosterman sums","authors":"Liping Yang","doi":"10.1515/forum-2023-0295","DOIUrl":"https://doi.org/10.1515/forum-2023-0295","url":null,"abstract":"The modern study of the exponential sums is mainly about their analytic estimates as complex numbers, which is local. In this paper, we study one global property of the exponential sums by viewing them as algebraic integers. For a kind of generalized Kloosterman sums, we present their degrees as algebraic integers.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"258 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraic results on rngs of singular functions 奇异函数 rngs 的代数结果
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-30 DOI: 10.1515/forum-2023-0445
Arran Fernandez, Müge Saadetoğlu
{"title":"Algebraic results on rngs of singular functions","authors":"Arran Fernandez, Müge Saadetoğlu","doi":"10.1515/forum-2023-0445","DOIUrl":"https://doi.org/10.1515/forum-2023-0445","url":null,"abstract":"We consider a Mikusiński-type convolution algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>C</m:mi> <m:mi>α</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0445_eq_0144.png\" /> <jats:tex-math>{C_{alpha}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including functions with power-type singularities at the origin as well as all functions continuous on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0445_eq_0198.png\" /> <jats:tex-math>{[0,infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Algebraic properties of this space are derived, including its ideal structure, filtered and graded structure, and Jacobson radical. Applications to operators of fractional calculus and the associated integro-differential equations are discussed.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"37 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-parameter and bilinear Calderón–Vaillancourt theorem with critical order 具有临界阶的双参数和双线性卡尔德隆-瓦扬库尔定理
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-30 DOI: 10.1515/forum-2023-0458
Jiao Chen, Liang Huang, Guozhen Lu
{"title":"Bi-parameter and bilinear Calderón–Vaillancourt theorem with critical order","authors":"Jiao Chen, Liang Huang, Guozhen Lu","doi":"10.1515/forum-2023-0458","DOIUrl":"https://doi.org/10.1515/forum-2023-0458","url":null,"abstract":"In this paper, we establish the sharp Calderón–Vaillancourt theorem on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0458_eq_0174.png\" /> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> spaces for bi-parameter and bilinear pseudo-differential operators with symbols of critical order by deriving a sufficient and necessary condition on its symbol. This sharpens the result of [G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 2016, 6, 1087–1094] which was only proved for symbols of subcritical order.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"177 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardy inequalities on metric measure spaces, IV: The case p=1 度量空间上的哈代不等式,IV:p=1 的情况
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-14 DOI: 10.1515/forum-2023-0319
Michael Ruzhansky, Anjali Shriwastawa, Bankteshwar Tiwari
{"title":"Hardy inequalities on metric measure spaces, IV: The case p=1","authors":"Michael Ruzhansky, Anjali Shriwastawa, Bankteshwar Tiwari","doi":"10.1515/forum-2023-0319","DOIUrl":"https://doi.org/10.1515/forum-2023-0319","url":null,"abstract":"In this paper, we investigate the two-weight Hardy inequalities on metric measure space possessing polar decompositions for the case &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0172.png\" /&gt; &lt;jats:tex-math&gt;{p=1}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;∞&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0087.png\" /&gt; &lt;jats:tex-math&gt;{1leq q&lt;infty}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. This result complements the Hardy inequalities obtained in [M. Ruzhansky and D. Verma, Hardy inequalities on metric measure spaces, Proc. Roy. Soc. A. 475 2019, 2223, Article ID 20180310] in the case &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;∞&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0086.png\" /&gt; &lt;jats:tex-math&gt;{1&lt;pleq q&lt;infty}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. The case &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0172.png\" /&gt; &lt;jats:tex-math&gt;{p=1}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; requires a different argument and does not follow as the limit of known inequalities for &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;&gt;&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0173.png\" /&gt; &lt;jats:tex-math&gt;{p&gt;1}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. As a byproduct, we also obtain the best constant in the established inequality. We give examples obtaining new weighted Hardy inequalities on homogeneous Lie groups, on hyperbolic spaces and on Cartan–Hadamard manifolds for the case &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0172.png\" /&gt; &lt;jats:tex-math&gt;{p=1}","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"12 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcendence on algebraic groups 代数群上的超越
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-10 DOI: 10.1515/forum-2023-0078
Duc Hiep Pham
{"title":"Transcendence on algebraic groups","authors":"Duc Hiep Pham","doi":"10.1515/forum-2023-0078","DOIUrl":"https://doi.org/10.1515/forum-2023-0078","url":null,"abstract":"In this paper, we give some new results on transcendence on algebraic groups. These results extend some previous ones established on commutative or linear algebraic groups to arbitrary algebraic groups in complex and <jats:italic>p</jats:italic>-adic fields, respectively.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"25 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139421105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes 关于移位素数的邦比里无对数密度估计和萨尔科齐定理的明确版本
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-10 DOI: 10.1515/forum-2023-0091
Jesse Thorner, Asif Zaman
{"title":"An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes","authors":"Jesse Thorner, Asif Zaman","doi":"10.1515/forum-2023-0091","DOIUrl":"https://doi.org/10.1515/forum-2023-0091","url":null,"abstract":"We make explicit Bombieri’s refinement of Gallagher’s log-free “large sieve density estimate near <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>σ</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0510.png\" /> <jats:tex-math>{sigma=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>” for Dirichlet <jats:italic>L</jats:italic>-functions. We use this estimate and recent work of Green to prove that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0355.png\" /> <jats:tex-math>{Ngeq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an integer, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>⊆</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:mi>N</m:mi> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0326.png\" /> <jats:tex-math>{Asubseteq{1,ldots,N}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and for all primes <jats:italic>p</jats:italic> no two elements in <jats:italic>A</jats:italic> differ by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0579.png\" /> <jats:tex-math>{p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≪</m:mo> <m:msup> <m:mi>N</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:msup> <m:mn>10</m:mn> <m:mrow> <m:mo>-</m:mo> <m:mn>18</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0630.png\" /> <jats:tex-math>{|A|ll N^{1-10^{-18}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This strengthens a theorem of Sárközy.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"52 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple normalized solutions for fractional elliptic problems 分数椭圆问题的多重归一化解法
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-10 DOI: 10.1515/forum-2023-0366
Thin Van Nguyen, Vicenţiu D. Rădulescu
{"title":"Multiple normalized solutions for fractional elliptic problems","authors":"Thin Van Nguyen, Vicenţiu D. Rădulescu","doi":"10.1515/forum-2023-0366","DOIUrl":"https://doi.org/10.1515/forum-2023-0366","url":null,"abstract":"In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional &lt;jats:italic&gt;p&lt;/jats:italic&gt;-Laplace problem: &lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mo&gt;{&lt;/m:mo&gt; &lt;m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;-&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"script\"&gt;𝒱&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ξ&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo fence=\"true\" stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mo fence=\"true\" stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;-&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi /&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;λ&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo fence=\"true\" stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mo fence=\"true\" stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;-&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo separator=\"true\"&gt; &lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mtext&gt;in &lt;/m:mtext&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"right\"&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mo largeop=\"true\" symmetric=\"true\"&gt;∫&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi&gt;ℝ&lt;/m:mi&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:msub&gt; &lt;m:mrow&gt; &lt;m:mpadded width=\"+1.7pt\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo fence=\"true\" stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mo fence=\"true\" stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:mpadded&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;𝑑&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi /&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi&gt;a&lt;/m:mi&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;/m:mtable&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0162.png\" /&gt; &lt;jats:tex-math&gt;left{begin{aligned} displaystyle{}(-Delta)_{p}^{s}v+mathcal{V}(xi x)% lvert vrvert^{p-2}v&amp;displaystyle=lambdalvert vrvert^{p-2}v+f(v)quad% text{in }mathbb{R}^{N}, displaystyleint_{mathbb{R}^{N}}lvert vrvert^{p},dx&amp;displaystyle=a^{p},% end{aligned}right.&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"82 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信