布依多尔群的 C* 代数

IF 1 3区 数学 Q1 MATHEMATICS
Ying-Fen Lin, Jean Ludwig
{"title":"布依多尔群的 C* 代数","authors":"Ying-Fen Lin, Jean Ludwig","doi":"10.1515/forum-2021-0209","DOIUrl":null,"url":null,"abstract":"The Boidol group is the smallest non-<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∗</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2021-0209_eq_0575.png\" /> <jats:tex-math>{\\ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular exponential Lie group. It is of dimension 4 and its Lie algebra is an extension of the Heisenberg Lie algebra by the reals with the roots 1 and -1. We describe the C*-algebra of the Boidol group as an algebra of operator fields defined over the spectrum of the group. It is the only connected solvable Lie group of dimension less than or equal to 4 whose group C*-algebra had not yet been determined.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"291 2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The C*-algebra of the Boidol group\",\"authors\":\"Ying-Fen Lin, Jean Ludwig\",\"doi\":\"10.1515/forum-2021-0209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Boidol group is the smallest non-<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>∗</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2021-0209_eq_0575.png\\\" /> <jats:tex-math>{\\\\ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular exponential Lie group. It is of dimension 4 and its Lie algebra is an extension of the Heisenberg Lie algebra by the reals with the roots 1 and -1. We describe the C*-algebra of the Boidol group as an algebra of operator fields defined over the spectrum of the group. It is the only connected solvable Lie group of dimension less than or equal to 4 whose group C*-algebra had not yet been determined.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"291 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2021-0209\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2021-0209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

布依多尔群是最小的非∗{ast}正则指数李群。它的维数是 4,它的李代数是海森堡李代数的扩展,由根为 1 和 -1 的实数构成。我们把布依多尔群的 C* 代数描述为定义在该群谱上的算子域代数。它是唯一维数小于或等于 4 的连通可解李群,其群 C* 代数尚未确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The C*-algebra of the Boidol group
The Boidol group is the smallest non- {\ast} -regular exponential Lie group. It is of dimension 4 and its Lie algebra is an extension of the Heisenberg Lie algebra by the reals with the roots 1 and -1. We describe the C*-algebra of the Boidol group as an algebra of operator fields defined over the spectrum of the group. It is the only connected solvable Lie group of dimension less than or equal to 4 whose group C*-algebra had not yet been determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信