{"title":"分数椭圆问题的多重归一化解法","authors":"Thin Van Nguyen, Vicenţiu D. Rădulescu","doi":"10.1515/forum-2023-0366","DOIUrl":null,"url":null,"abstract":"In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional <jats:italic>p</jats:italic>-Laplace problem: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi mathvariant=\"script\">𝒱</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:mi>v</m:mi> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo separator=\"true\"> </m:mo> <m:mrow> <m:mtext>in </m:mtext> <m:mo></m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:msub> <m:mrow> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>p</m:mi> </m:msup> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:msup> <m:mi>a</m:mi> <m:mi>p</m:mi> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0162.png\" /> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}(-\\Delta)_{p}^{s}v+\\mathcal{V}(\\xi x)% \\lvert v\\rvert^{p-2}v&\\displaystyle=\\lambda\\lvert v\\rvert^{p-2}v+f(v)\\quad% \\text{in }\\mathbb{R}^{N},\\\\ \\displaystyle\\int_{\\mathbb{R}^{N}}\\lvert v\\rvert^{p}\\,dx&\\displaystyle=a^{p},% \\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0550.png\" /> <jats:tex-math>{a,\\xi>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0590.png\" /> <jats:tex-math>{p\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0412.png\" /> <jats:tex-math>{\\lambda\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an unknown parameter that appears as a Lagrange multiplier, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒱</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0471.png\" /> <jats:tex-math>{\\mathcal{V}:\\mathbb{R}^{N}\\to[0,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a continuous function, and <jats:italic>f</jats:italic> is a continuous function with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0356.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒱</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0479.png\" /> <jats:tex-math>{\\mathcal{V}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, as ξ is small enough via Ekeland’s variational principle.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"82 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple normalized solutions for fractional elliptic problems\",\"authors\":\"Thin Van Nguyen, Vicenţiu D. Rădulescu\",\"doi\":\"10.1515/forum-2023-0366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional <jats:italic>p</jats:italic>-Laplace problem: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\\\"0pt\\\" displaystyle=\\\"true\\\" rowspacing=\\\"0pt\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo></m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒱</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> <m:mo></m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:mi>v</m:mi> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo></m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo separator=\\\"true\\\"> </m:mo> <m:mrow> <m:mtext>in </m:mtext> <m:mo></m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:msub> <m:mrow> <m:mpadded width=\\\"+1.7pt\\\"> <m:msup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>p</m:mi> </m:msup> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:msup> <m:mi>a</m:mi> <m:mi>p</m:mi> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0162.png\\\" /> <jats:tex-math>\\\\left\\\\{\\\\begin{aligned} \\\\displaystyle{}(-\\\\Delta)_{p}^{s}v+\\\\mathcal{V}(\\\\xi x)% \\\\lvert v\\\\rvert^{p-2}v&\\\\displaystyle=\\\\lambda\\\\lvert v\\\\rvert^{p-2}v+f(v)\\\\quad% \\\\text{in }\\\\mathbb{R}^{N},\\\\\\\\ \\\\displaystyle\\\\int_{\\\\mathbb{R}^{N}}\\\\lvert v\\\\rvert^{p}\\\\,dx&\\\\displaystyle=a^{p},% \\\\end{aligned}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0550.png\\\" /> <jats:tex-math>{a,\\\\xi>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0590.png\\\" /> <jats:tex-math>{p\\\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0412.png\\\" /> <jats:tex-math>{\\\\lambda\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an unknown parameter that appears as a Lagrange multiplier, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒱</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0471.png\\\" /> <jats:tex-math>{\\\\mathcal{V}:\\\\mathbb{R}^{N}\\\\to[0,\\\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a continuous function, and <jats:italic>f</jats:italic> is a continuous function with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0356.png\\\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒱</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0479.png\\\" /> <jats:tex-math>{\\\\mathcal{V}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, as ξ is small enough via Ekeland’s variational principle.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0366\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0366","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们首先关注以下分数 p-Laplace 问题的多重归一化解的存在性:{ ( - Δ ) p s v + 𝒱 ( ξ x ) | v | p - 2 v = λ | v | p - 2 v + f ( v ) in ℝ N , ∫ ℝ N | v | p 𝑑 x = a p , \left\{begin{aligned}\(-\Delta)_{p}^{s}v+\mathcal{V}(\xi x)% \lvert v\rvert^{p-2}v&;\displaystyle=\lambda\lvert v\rvert^{p-2}v+f(v)\quad% \text{in }\mathbb{R}^{N},\\displaystyle\int_{\mathbb{R}^{N}}\lvert v\rvert^{p}\,dx&\displaystyle=a^{p},%\end{aligned}\right. 其中 a , ξ > 0 {a,\xi>0} p ≥ 2 {p\geq 2} , λ ∈ ℝ {\lambda\inmathbb{R}} 是作为拉格朗日乘数出现的未知参数,𝒱 : ℝ N → [ 0 , ∞ ) {\mathcal{V}:\mathbb{R}^{N}\to[0,\infty)}是一个连续函数,并且 f 是一个具有 L p {L^{p}} 的连续函数。 -次临界增长的连续函数。我们利用 Lusternik-Schnirelmann 范畴证明存在解的多重性。接下来,我们证明归一化解的数量至少是𝒱 {\mathcal{V}} 的全局最小点的数量。 ,因为通过埃克兰德变分原理,ξ足够小。
Multiple normalized solutions for fractional elliptic problems
In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional p-Laplace problem: {(-Δ)psv+𝒱(ξx)|v|p-2v=λ|v|p-2v+f(v)in ℝN,∫ℝN|v|p𝑑x=ap,\left\{\begin{aligned} \displaystyle{}(-\Delta)_{p}^{s}v+\mathcal{V}(\xi x)% \lvert v\rvert^{p-2}v&\displaystyle=\lambda\lvert v\rvert^{p-2}v+f(v)\quad% \text{in }\mathbb{R}^{N},\\ \displaystyle\int_{\mathbb{R}^{N}}\lvert v\rvert^{p}\,dx&\displaystyle=a^{p},% \end{aligned}\right. where a,ξ>0{a,\xi>0}, p≥2{p\geq 2}, λ∈ℝ{\lambda\in\mathbb{R}} is an unknown parameter that appears as a Lagrange multiplier, 𝒱:ℝN→[0,∞){\mathcal{V}:\mathbb{R}^{N}\to[0,\infty)} is a continuous function, and f is a continuous function with Lp{L^{p}}-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of 𝒱{\mathcal{V}}, as ξ is small enough via Ekeland’s variational principle.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.