分数椭圆问题的多重归一化解法

IF 1 3区 数学 Q1 MATHEMATICS
Thin Van Nguyen, Vicenţiu D. Rădulescu
{"title":"分数椭圆问题的多重归一化解法","authors":"Thin Van Nguyen, Vicenţiu D. Rădulescu","doi":"10.1515/forum-2023-0366","DOIUrl":null,"url":null,"abstract":"In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional <jats:italic>p</jats:italic>-Laplace problem: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi mathvariant=\"script\">𝒱</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>v</m:mi> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo separator=\"true\"> </m:mo> <m:mrow> <m:mtext>in </m:mtext> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:msub> <m:mrow> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>p</m:mi> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:msup> <m:mi>a</m:mi> <m:mi>p</m:mi> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0162.png\" /> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}(-\\Delta)_{p}^{s}v+\\mathcal{V}(\\xi x)% \\lvert v\\rvert^{p-2}v&amp;\\displaystyle=\\lambda\\lvert v\\rvert^{p-2}v+f(v)\\quad% \\text{in }\\mathbb{R}^{N},\\\\ \\displaystyle\\int_{\\mathbb{R}^{N}}\\lvert v\\rvert^{p}\\,dx&amp;\\displaystyle=a^{p},% \\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0550.png\" /> <jats:tex-math>{a,\\xi&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0590.png\" /> <jats:tex-math>{p\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0412.png\" /> <jats:tex-math>{\\lambda\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an unknown parameter that appears as a Lagrange multiplier, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒱</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0471.png\" /> <jats:tex-math>{\\mathcal{V}:\\mathbb{R}^{N}\\to[0,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a continuous function, and <jats:italic>f</jats:italic> is a continuous function with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0356.png\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒱</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0366_eq_0479.png\" /> <jats:tex-math>{\\mathcal{V}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, as ξ is small enough via Ekeland’s variational principle.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"82 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple normalized solutions for fractional elliptic problems\",\"authors\":\"Thin Van Nguyen, Vicenţiu D. Rădulescu\",\"doi\":\"10.1515/forum-2023-0366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional <jats:italic>p</jats:italic>-Laplace problem: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\\\"0pt\\\" displaystyle=\\\"true\\\" rowspacing=\\\"0pt\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:mrow> <m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>p</m:mi> <m:mi>s</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒱</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> <m:mo>⁢</m:mo> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>v</m:mi> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>v</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo separator=\\\"true\\\"> </m:mo> <m:mrow> <m:mtext>in </m:mtext> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mrow> <m:msub> <m:mo largeop=\\\"true\\\" symmetric=\\\"true\\\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:msub> <m:mrow> <m:mpadded width=\\\"+1.7pt\\\"> <m:msup> <m:mrow> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> <m:mi>v</m:mi> <m:mo fence=\\\"true\\\" stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>p</m:mi> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:msup> <m:mi>a</m:mi> <m:mi>p</m:mi> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0162.png\\\" /> <jats:tex-math>\\\\left\\\\{\\\\begin{aligned} \\\\displaystyle{}(-\\\\Delta)_{p}^{s}v+\\\\mathcal{V}(\\\\xi x)% \\\\lvert v\\\\rvert^{p-2}v&amp;\\\\displaystyle=\\\\lambda\\\\lvert v\\\\rvert^{p-2}v+f(v)\\\\quad% \\\\text{in }\\\\mathbb{R}^{N},\\\\\\\\ \\\\displaystyle\\\\int_{\\\\mathbb{R}^{N}}\\\\lvert v\\\\rvert^{p}\\\\,dx&amp;\\\\displaystyle=a^{p},% \\\\end{aligned}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0550.png\\\" /> <jats:tex-math>{a,\\\\xi&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0590.png\\\" /> <jats:tex-math>{p\\\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0412.png\\\" /> <jats:tex-math>{\\\\lambda\\\\in\\\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an unknown parameter that appears as a Lagrange multiplier, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒱</m:mi> <m:mo>:</m:mo> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>→</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0471.png\\\" /> <jats:tex-math>{\\\\mathcal{V}:\\\\mathbb{R}^{N}\\\\to[0,\\\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a continuous function, and <jats:italic>f</jats:italic> is a continuous function with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0356.png\\\" /> <jats:tex-math>{L^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒱</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0366_eq_0479.png\\\" /> <jats:tex-math>{\\\\mathcal{V}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, as ξ is small enough via Ekeland’s variational principle.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0366\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0366","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先关注以下分数 p-Laplace 问题的多重归一化解的存在性:{ ( - Δ ) p s v + 𝒱 ( ξ x ) | v | p - 2 v = λ | v | p - 2 v + f ( v ) in ℝ N , ∫ ℝ N | v | p 𝑑 x = a p , \left\{begin{aligned}\(-\Delta)_{p}^{s}v+\mathcal{V}(\xi x)% \lvert v\rvert^{p-2}v&;\displaystyle=\lambda\lvert v\rvert^{p-2}v+f(v)\quad% \text{in }\mathbb{R}^{N},\\displaystyle\int_{\mathbb{R}^{N}}\lvert v\rvert^{p}\,dx&\displaystyle=a^{p},%\end{aligned}\right. 其中 a , ξ > 0 {a,\xi>0} p ≥ 2 {p\geq 2} , λ ∈ ℝ {\lambda\inmathbb{R}} 是作为拉格朗日乘数出现的未知参数,𝒱 : ℝ N → [ 0 , ∞ ) {\mathcal{V}:\mathbb{R}^{N}\to[0,\infty)}是一个连续函数,并且 f 是一个具有 L p {L^{p}} 的连续函数。 -次临界增长的连续函数。我们利用 Lusternik-Schnirelmann 范畴证明存在解的多重性。接下来,我们证明归一化解的数量至少是𝒱 {\mathcal{V}} 的全局最小点的数量。 ,因为通过埃克兰德变分原理,ξ足够小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple normalized solutions for fractional elliptic problems
In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional p-Laplace problem: { ( - Δ ) p s v + 𝒱 ( ξ x ) | v | p - 2 v = λ | v | p - 2 v + f ( v ) in N , N | v | p 𝑑 x = a p , \left\{\begin{aligned} \displaystyle{}(-\Delta)_{p}^{s}v+\mathcal{V}(\xi x)% \lvert v\rvert^{p-2}v&\displaystyle=\lambda\lvert v\rvert^{p-2}v+f(v)\quad% \text{in }\mathbb{R}^{N},\\ \displaystyle\int_{\mathbb{R}^{N}}\lvert v\rvert^{p}\,dx&\displaystyle=a^{p},% \end{aligned}\right. where a , ξ > 0 {a,\xi>0} , p 2 {p\geq 2} , λ {\lambda\in\mathbb{R}} is an unknown parameter that appears as a Lagrange multiplier, 𝒱 : N [ 0 , ) {\mathcal{V}:\mathbb{R}^{N}\to[0,\infty)} is a continuous function, and f is a continuous function with L p {L^{p}} -subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik–Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of 𝒱 {\mathcal{V}} , as ξ is small enough via Ekeland’s variational principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信