{"title":"具有临界阶的双参数和双线性卡尔德隆-瓦扬库尔定理","authors":"Jiao Chen, Liang Huang, Guozhen Lu","doi":"10.1515/forum-2023-0458","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the sharp Calderón–Vaillancourt theorem on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0458_eq_0174.png\" /> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> spaces for bi-parameter and bilinear pseudo-differential operators with symbols of critical order by deriving a sufficient and necessary condition on its symbol. This sharpens the result of [G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 2016, 6, 1087–1094] which was only proved for symbols of subcritical order.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"177 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-parameter and bilinear Calderón–Vaillancourt theorem with critical order\",\"authors\":\"Jiao Chen, Liang Huang, Guozhen Lu\",\"doi\":\"10.1515/forum-2023-0458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish the sharp Calderón–Vaillancourt theorem on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0458_eq_0174.png\\\" /> <jats:tex-math>L^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> spaces for bi-parameter and bilinear pseudo-differential operators with symbols of critical order by deriving a sufficient and necessary condition on its symbol. This sharpens the result of [G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 2016, 6, 1087–1094] which was only proved for symbols of subcritical order.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文通过推导符号上的充分必要条件,建立了 L p L^{p} 空间上具有临界阶符号的双参数和双线性伪微分算子的尖锐卡尔德隆-韦朗库尔定理。这使[G. Lu and L. Zhang, Bi-parameter and bilinear Calderón-Vaillancourt theorem with subcritical order, Forum Math.28 2016, 6, 1087-1094],该结果只证明了亚临界阶的符号。
Bi-parameter and bilinear Calderón–Vaillancourt theorem with critical order
In this paper, we establish the sharp Calderón–Vaillancourt theorem on LpL^{p} spaces for bi-parameter and bilinear pseudo-differential operators with symbols of critical order by deriving a sufficient and necessary condition on its symbol. This sharpens the result of [G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 2016, 6, 1087–1094] which was only proved for symbols of subcritical order.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.