度量空间上的哈代不等式,IV:p=1 的情况

IF 1 3区 数学 Q1 MATHEMATICS
Michael Ruzhansky, Anjali Shriwastawa, Bankteshwar Tiwari
{"title":"度量空间上的哈代不等式,IV:p=1 的情况","authors":"Michael Ruzhansky, Anjali Shriwastawa, Bankteshwar Tiwari","doi":"10.1515/forum-2023-0319","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the two-weight Hardy inequalities on metric measure space possessing polar decompositions for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0172.png\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0087.png\" /> <jats:tex-math>{1\\leq q&lt;\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result complements the Hardy inequalities obtained in [M. Ruzhansky and D. Verma, Hardy inequalities on metric measure spaces, Proc. Roy. Soc. A. 475 2019, 2223, Article ID 20180310] in the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0086.png\" /> <jats:tex-math>{1&lt;p\\leq q&lt;\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0172.png\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> requires a different argument and does not follow as the limit of known inequalities for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&gt;</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0173.png\" /> <jats:tex-math>{p&gt;1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a byproduct, we also obtain the best constant in the established inequality. We give examples obtaining new weighted Hardy inequalities on homogeneous Lie groups, on hyperbolic spaces and on Cartan–Hadamard manifolds for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0172.png\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0319_eq_0087.png\" /> <jats:tex-math>{1\\leq q&lt;\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardy inequalities on metric measure spaces, IV: The case p=1\",\"authors\":\"Michael Ruzhansky, Anjali Shriwastawa, Bankteshwar Tiwari\",\"doi\":\"10.1515/forum-2023-0319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the two-weight Hardy inequalities on metric measure space possessing polar decompositions for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0172.png\\\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0087.png\\\" /> <jats:tex-math>{1\\\\leq q&lt;\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result complements the Hardy inequalities obtained in [M. Ruzhansky and D. Verma, Hardy inequalities on metric measure spaces, Proc. Roy. Soc. A. 475 2019, 2223, Article ID 20180310] in the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0086.png\\\" /> <jats:tex-math>{1&lt;p\\\\leq q&lt;\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0172.png\\\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> requires a different argument and does not follow as the limit of known inequalities for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&gt;</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0173.png\\\" /> <jats:tex-math>{p&gt;1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a byproduct, we also obtain the best constant in the established inequality. We give examples obtaining new weighted Hardy inequalities on homogeneous Lie groups, on hyperbolic spaces and on Cartan–Hadamard manifolds for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0172.png\\\" /> <jats:tex-math>{p=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0319_eq_0087.png\\\" /> <jats:tex-math>{1\\\\leq q&lt;\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0319\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0319","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了具有极性分解的度量空间上的两重哈代不等式,即 p = 1 {p=1} 和 1 ≤ q < ∞ {1\leq q<\infty} 的情况。这一结果是对 [M. Ruzhansky 和 D. Ruzhansky] 中得到的哈代不等式的补充。Ruzhansky and D. Verma, Hardy inequalities on metric measure spaces, Proc.Roy.Soc. A. 475 2019, 2223, Article ID 20180310] 中 1 < p ≤ q < ∞ {1<p\leq q<\infty} 的情况。p = 1 {p=1}的情况需要不同的论证,并不是 p > 1 {p>1}的已知不等式的极限。作为副产品,我们还得到了既定不等式中的最佳常数。我们举例说明了在 p = 1 {p=1} 和 1 ≤ q < ∞ {1\leq q<\infty} 的情况下,同质李群、双曲空间和 Cartan-Hadamard 流形上新的加权哈代不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardy inequalities on metric measure spaces, IV: The case p=1
In this paper, we investigate the two-weight Hardy inequalities on metric measure space possessing polar decompositions for the case p = 1 {p=1} and 1 q < {1\leq q<\infty} . This result complements the Hardy inequalities obtained in [M. Ruzhansky and D. Verma, Hardy inequalities on metric measure spaces, Proc. Roy. Soc. A. 475 2019, 2223, Article ID 20180310] in the case 1 < p q < {1<p\leq q<\infty} . The case p = 1 {p=1} requires a different argument and does not follow as the limit of known inequalities for p > 1 {p>1} . As a byproduct, we also obtain the best constant in the established inequality. We give examples obtaining new weighted Hardy inequalities on homogeneous Lie groups, on hyperbolic spaces and on Cartan–Hadamard manifolds for the case p = 1 {p=1} and 1 q < {1\leq q<\infty} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信