Normalized solutions for the fractional Schrödinger equation with combined nonlinearities

IF 1 3区 数学 Q1 MATHEMATICS
Shengbing Deng, Qiaoran Wu
{"title":"Normalized solutions for the fractional Schrödinger equation with combined nonlinearities","authors":"Shengbing Deng, Qiaoran Wu","doi":"10.1515/forum-2023-0424","DOIUrl":null,"url":null,"abstract":"In this paper, we study the normalized solutions for the following fractional Schrödinger equation with combined nonlinearities <jats:disp-formula-group> <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>-</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>s</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>μ</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:mo fence=\"true\" stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mi>u</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd /> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mtext>in </m:mtext> <m:mo>⁢</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>N</m:mi> </m:msup> </m:msub> </m:mstyle> <m:mrow> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>u</m:mi> <m:mn>2</m:mn> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>x</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi /> <m:mo>=</m:mo> <m:msup> <m:mi>a</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0161.png\" /> <jats:tex-math>\\displaystyle\\left\\{\\begin{aligned} \\displaystyle{}(-\\Delta)^{s}u&amp;% \\displaystyle=\\lambda u+\\mu\\lvert u\\rvert^{q-2}u+\\lvert u\\rvert^{p-2}u&amp;&amp;% \\displaystyle\\phantom{}\\text{in }\\mathbb{R}^{N},\\\\ \\displaystyle\\int_{\\mathbb{R}^{N}}u^{2}\\,dx&amp;\\displaystyle=a^{2},\\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> </jats:disp-formula-group> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>&lt;</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0263.png\" /> <jats:tex-math>{0&lt;s&lt;1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>&gt;</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>s</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0318.png\" /> <jats:tex-math>{N&gt;2s}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>&lt;</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:msubsup> <m:mn>2</m:mn> <m:mi>s</m:mi> <m:mo>*</m:mo> </m:msubsup> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>-</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>s</m:mi> </m:mrow> </m:mrow> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0281.png\" /> <jats:tex-math>{2&lt;q&lt;p=2_{s}^{*}=\\frac{2N}{N-2s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>μ</m:mi> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0421.png\" /> <jats:tex-math>{a,\\mu&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>λ</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0350.png\" /> <jats:tex-math>{\\lambda\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a Lagrange multiplier. Since the existence results for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:msubsup> <m:mn>2</m:mn> <m:mi>s</m:mi> <m:mo>*</m:mo> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0455.png\" /> <jats:tex-math>{p&lt;2_{s}^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> have been proved, using an approximation method, that is, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>→</m:mo> <m:msubsup> <m:mn>2</m:mn> <m:mi>s</m:mi> <m:mo>*</m:mo> </m:msubsup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0460.png\" /> <jats:tex-math>{p\\rightarrow 2_{s}^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we obtain several existence results. Moreover, we analyze the asymptotic behavior of solutions as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo>→</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0424_eq_0386.png\" /> <jats:tex-math>{\\mu\\rightarrow 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and μ goes to its upper bound.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"190 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0424","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the normalized solutions for the following fractional Schrödinger equation with combined nonlinearities { ( - Δ ) s u = λ u + μ | u | q - 2 u + | u | p - 2 u in N , N u 2 𝑑 x = a 2 , \displaystyle\left\{\begin{aligned} \displaystyle{}(-\Delta)^{s}u&% \displaystyle=\lambda u+\mu\lvert u\rvert^{q-2}u+\lvert u\rvert^{p-2}u&&% \displaystyle\phantom{}\text{in }\mathbb{R}^{N},\\ \displaystyle\int_{\mathbb{R}^{N}}u^{2}\,dx&\displaystyle=a^{2},\end{aligned}\right. where 0 < s < 1 {0<s<1} , N > 2 s {N>2s} , 2 < q < p = 2 s * = 2 N N - 2 s {2<q<p=2_{s}^{*}=\frac{2N}{N-2s}} , a , μ > 0 {a,\mu>0} and λ {\lambda\in\mathbb{R}} is a Lagrange multiplier. Since the existence results for p < 2 s * {p<2_{s}^{*}} have been proved, using an approximation method, that is, let p 2 s * {p\rightarrow 2_{s}^{*}} , we obtain several existence results. Moreover, we analyze the asymptotic behavior of solutions as μ 0 {\mu\rightarrow 0} and μ goes to its upper bound.
具有组合非线性的分数薛定谔方程的归一化解
本文研究了以下具有组合非线性的分数薛定谔方程的归一化解 { ( - Δ ) s u = λ u + μ | u | q - 2 u + | u | p - 2 u in ℝ N , ∫ ℝ N u 2 𝑑 x = a 2 , \displaystyle\left\{\begin{aligned}\(-\Delta)^{s}u&% \displaystyle=\lambda u+\mu\lvert u\rvert^{q-2}u+\lvert u\rvert^{p-2}u&&;% \displaystyle\phantom{}\text{in }\mathbb{R}^{N},\\displaystyle\int_{\mathbb{R}^{N}}u^{2}\,dx&\displaystyle=a^{2},\end{aligned}\right. 其中,0 < s < 1 {0<s<1} , N > 2 s {N>2s} , 2 < q < 1 {0<s<1}. 2 < q < p = 2 s * = 2 N N - 2 s {2<q<p=2_{s}^{*}=frac{2N}{N-2s}} , a , μ > 0 {a,\mu>0} 且 λ∈ ℝ {\lambda\in\mathbb{R}} 是拉格朗日乘数。由于 p< 2 s * {p<2_{s}^{*}}的存在性结果已被证明,因此使用近似法,即让 p → 2 s * {p\rightarrow 2_{s}^{*}} ,我们可以得到几个存在性结果。 ,我们得到了几个存在性结果。此外,我们还分析了当μ → 0 {\mu\rightarrow 0}和μ达到其上限时解的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信