Forum Mathematicum最新文献

筛选
英文 中文
New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators 利用广义算术除数和函数及紧凑算子导出的新序列空间
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-04 DOI: 10.1515/forum-2023-0138
Taja Yaying, Nipen Saikia, Mohammad Mursaleen
{"title":"New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators","authors":"Taja Yaying, Nipen Saikia, Mohammad Mursaleen","doi":"10.1515/forum-2023-0138","DOIUrl":"https://doi.org/10.1515/forum-2023-0138","url":null,"abstract":"Define an infinite matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mi>α</m:mi> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0001.png\" /> <jats:tex-math>mathfrak{D}^{alpha}=(d^{alpha}_{n,v})</jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mi>α</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"5pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:mrow> <m:mfrac> <m:msup> <m:mi>v</m:mi> <m:mi>α</m:mi> </m:msup> <m:mrow> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi>v</m:mi> <m:mo>∣</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi>v</m:mi> <m:mo>∤</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_eq_9999.png\" /> <jats:tex-math>d^{alpha}_{n,v}=begin{cases}dfrac{v^{alpha}}{sigma^{(alpha)}(n)},&vmid n, 0,&vnmid n,end{cases}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0002.png\" /> <jats:tex-math>sigma^{(alpha)}(n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is defined to be the sum of the 𝛼-th power of the positive divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:math> <jats:inline-gr","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140035232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building planar polygon spaces from the projective braid arrangement 从投影辫状排列构建平面多边形空间
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-28 DOI: 10.1515/forum-2023-0032
Navnath Daundkar, Priyavrat Deshpande
{"title":"Building planar polygon spaces from the projective braid arrangement","authors":"Navnath Daundkar, Priyavrat Deshpande","doi":"10.1515/forum-2023-0032","DOIUrl":"https://doi.org/10.1515/forum-2023-0032","url":null,"abstract":"The moduli space of planar polygons with generic side lengths is a smooth, closed manifold. It is known that these manifolds contain the moduli space of distinct points on the real projective line as an open dense subset. Kapranov showed that the real points of the Deligne–Mumford–Knudson compactification can be obtained from the projective Coxeter complex of type 𝐴 (equivalently, the projective braid arrangement) by iteratively blowing up along the minimal building set. In this paper, we show that these planar polygon spaces can also be obtained from the projective Coxeter complex of type 𝐴 by performing an iterative cellular surgery along a subcollection of the minimal building set. Interestingly, this subcollection is determined by the combinatorial data associated with the length vector called the genetic code.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"59 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint distribution of the cokernels of random p-adic matrices II 随机 p-adic 矩阵角核的联合分布 II
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2023-0131
Jiwan Jung, Jungin Lee
{"title":"Joint distribution of the cokernels of random p-adic matrices II","authors":"Jiwan Jung, Jungin Lee","doi":"10.1515/forum-2023-0131","DOIUrl":"https://doi.org/10.1515/forum-2023-0131","url":null,"abstract":"In this paper, we study the combinatorial relations between the cokernels <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0646.png\" /> <jats:tex-math>{operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0323.png\" /> <jats:tex-math>{1leq ileq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{ntimes n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrix over the ring of <jats:italic>p</jats:italic>-adic integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0431.png\" /> <jats:tex-math>{I_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"30 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some properties of extended frame measure 扩展框架测量的一些特性
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2023-0412
Jinjun Li, Zhiyi Wu, Fusheng Xiao
{"title":"Some properties of extended frame measure","authors":"Jinjun Li, Zhiyi Wu, Fusheng Xiao","doi":"10.1515/forum-2023-0412","DOIUrl":"https://doi.org/10.1515/forum-2023-0412","url":null,"abstract":"We prove that the extended frame spectral measures are of pure type and the Beurling dimension of any frame measure for an extended frame spectral measure is in its Fourier dimension and upper entropy dimension.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"76 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthogonal separation of variables for spaces of constant curvature 恒定曲率空间的正交变量分离
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2023-0300
Alexey V. Bolsinov, Andrey Yu. Konyaev, Vladimir S. Matveev
{"title":"Orthogonal separation of variables for spaces of constant curvature","authors":"Alexey V. Bolsinov, Andrey Yu. Konyaev, Vladimir S. Matveev","doi":"10.1515/forum-2023-0300","DOIUrl":"https://doi.org/10.1515/forum-2023-0300","url":null,"abstract":"We construct all orthogonal separating coordinates in constant curvature spaces of arbitrary signature. Further, we construct explicit transformation between orthogonal separating and flat or generalised flat coordinates, as well as explicit formulas for the corresponding Killing tensors and Stäckel matrices.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"51 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform bounds for Kloosterman sums of half-integral weight with applications 半整数权重克罗斯特曼和的统一边界及其应用
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2023-0201
Qihang Sun
{"title":"Uniform bounds for Kloosterman sums of half-integral weight with applications","authors":"Qihang Sun","doi":"10.1515/forum-2023-0201","DOIUrl":"https://doi.org/10.1515/forum-2023-0201","url":null,"abstract":"Sums of Kloosterman sums have deep connections with the theory of modular forms, and their estimation has many important consequences. Kuznetsov used his famous trace formula and got a power-saving estimate with respect to <jats:italic>x</jats:italic> with implied constants depending on <jats:italic>m</jats:italic> and <jats:italic>n</jats:italic>. Recently, in 2009, Sarnak and Tsimerman obtained a bound uniformly in <jats:italic>x</jats:italic>, <jats:italic>m</jats:italic> and <jats:italic>n</jats:italic>. The generalized Kloosterman sums are defined with multiplier systems and on congruence subgroups. Goldfeld and Sarnak bounded sums of them with main terms corresponding to exceptional eigenvalues of the hyperbolic Laplacian. Their error term is a power of <jats:italic>x</jats:italic> with implied constants depending on all the other factors. In this paper, for a wide class of half-integral weight multiplier systems, we get the same bound with the error term uniformly in <jats:italic>x</jats:italic>, <jats:italic>m</jats:italic> and <jats:italic>n</jats:italic>. Such uniform bounds have great applications. For the eta-multiplier, Ahlgren and Andersen obtained a uniform and power-saving bound with respect to <jats:italic>m</jats:italic> and <jats:italic>n</jats:italic>, which resulted in a convergent error estimate on the Rademacher exact formula of the partition function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0201_eq_0934.png\" /> <jats:tex-math>{p(n)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also establish a Rademacher-type exact formula for the difference of partitions of rank modulo 3, which allows us to apply our power-saving estimate to the tail of the formula for a convergent error bound.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"238 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
q-supercongruences from Watson's 8φ7 transformation 来自沃森 8φ7 转换的 q-supercongruences
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2023-0409
Xiaoxia Wang, Chang Xu
{"title":"q-supercongruences from Watson's 8φ7 transformation","authors":"Xiaoxia Wang, Chang Xu","doi":"10.1515/forum-2023-0409","DOIUrl":"https://doi.org/10.1515/forum-2023-0409","url":null,"abstract":"Employing Watson’s <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mmultiscripts> <m:mi>ϕ</m:mi> <m:mn>7</m:mn> <m:none /> <m:mprescripts /> <m:mn>8</m:mn> <m:none /> </m:mmultiscripts> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0409_eq_0156.png\" /> <jats:tex-math>{{}_{8}phi_{7}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> transformation formula, we unearth several <jats:italic>q</jats:italic>-supercongruences with a parameter <jats:italic>s</jats:italic>. Particularly, one of our results is an extension of a <jats:italic>q</jats:italic>-analogue of Van Hamme’s (G.2) supercongruence. In addition, we obtain a <jats:italic>q</jats:italic>-supercongruence modulo the fifth power of a cyclotomic polynomial and propose two related conjectures.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"13 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamental properties of Cauchy–Szegő projection on quaternionic Siegel upper half space and applications 四元西格尔上半空间考奇-塞格投影的基本性质及其应用
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2024-0049
Der-Chen Chang, Xuan Thinh Duong, Ji Li, Wei Wang, Qingyan Wu
{"title":"Fundamental properties of Cauchy–Szegő projection on quaternionic Siegel upper half space and applications","authors":"Der-Chen Chang, Xuan Thinh Duong, Ji Li, Wei Wang, Qingyan Wu","doi":"10.1515/forum-2024-0049","DOIUrl":"https://doi.org/10.1515/forum-2024-0049","url":null,"abstract":"We investigate the Cauchy–Szegő projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy–Szegő kernel and prove that the Cauchy–Szegő kernel is nonzero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy–Szegő projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>H</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0049_eq_0488.png\" /> <jats:tex-math>{H^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on quaternionic Siegel upper half space for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mn>2</m:mn> <m:mn>3</m:mn> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0049_eq_0631.png\" /> <jats:tex-math>{frac{2}{3}&lt;pleq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we establish the characterisation of singular values of the commutator of Cauchy–Szegő projection based on the kernel estimates. The quaternionic structure (lack of commutativity) is encoded in the symmetry groups of regular functions and the associated partial differential equations.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"34 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Submodules of normalisers in groupoid C*-algebras and discrete group coactions 类群 C* 算法中的归一化子模和离散群共同作用
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-02-20 DOI: 10.1515/forum-2023-0182
Fuyuta Komura
{"title":"Submodules of normalisers in groupoid C*-algebras and discrete group coactions","authors":"Fuyuta Komura","doi":"10.1515/forum-2023-0182","DOIUrl":"https://doi.org/10.1515/forum-2023-0182","url":null,"abstract":"In this paper, we investigate certain submodules in C*-algebras associated to effective étale groupoids. First, we show that a submodule generated by normalizers is a closure of the set of compactly supported continuous functions on some open set. As a corollary, we show that discrete group coactions on groupoid C*-algebras are induced by cocycles of étale groupoids if the fixed point algebras contain C*-subalgebras of continuous functions vanishing at infinity on the unit spaces. In the latter part, we prove the Galois correspondence result for discrete group coactions on groupoid C*-algebras.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"190 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular covers of divisible uniserial modules over valuation domains 估值域上可分单列模块的单元盖
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-01-31 DOI: 10.1515/forum-2023-0351
László Fuchs, Brendan Goldsmith, Luigi Salce, Lutz Strüngmann
{"title":"Cellular covers of divisible uniserial modules over valuation domains","authors":"László Fuchs, Brendan Goldsmith, Luigi Salce, Lutz Strüngmann","doi":"10.1515/forum-2023-0351","DOIUrl":"https://doi.org/10.1515/forum-2023-0351","url":null,"abstract":"Cellular covers which originate in homotopy theory are considered here for a very special class: divisible uniserial modules over valuation domains. This is a continuation of the study of cellular covers of divisible objects, but in order to obtain more substantial results, we are restricting our attention further to specific covers or to specific kernels. In particular, for <jats:italic>h</jats:italic>-divisible uniserial modules, we deal first with covers limited to divisible torsion-free modules (Section 3), and continue with the restriction to torsion standard uniserials (Sections 4–5). For divisible non-standard uniserial modules, only those cellular covers are investigated whose kernels are also divisible non-standard uniserials (Section 6). The results are specific enough to enable us to describe more accurately how to find all cellular covers obeying the chosen restrictions.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"6 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139656233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信