利用广义算术除数和函数及紧凑算子导出的新序列空间

IF 1 3区 数学 Q1 MATHEMATICS
Taja Yaying, Nipen Saikia, Mohammad Mursaleen
{"title":"利用广义算术除数和函数及紧凑算子导出的新序列空间","authors":"Taja Yaying, Nipen Saikia, Mohammad Mursaleen","doi":"10.1515/forum-2023-0138","DOIUrl":null,"url":null,"abstract":"Define an infinite matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mi>α</m:mi> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0001.png\" /> <jats:tex-math>\\mathfrak{D}^{\\alpha}=(d^{\\alpha}_{n,v})</jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mi>α</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"5pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:mrow> <m:mfrac> <m:msup> <m:mi>v</m:mi> <m:mi>α</m:mi> </m:msup> <m:mrow> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi>v</m:mi> <m:mo>∣</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mrow> <m:mi>v</m:mi> <m:mo>∤</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_eq_9999.png\" /> <jats:tex-math>d^{\\alpha}_{n,v}=\\begin{cases}\\dfrac{v^{\\alpha}}{\\sigma^{(\\alpha)}(n)},&amp;v\\mid n,\\\\ 0,&amp;v\\nmid n,\\end{cases}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0002.png\" /> <jats:tex-math>\\sigma^{(\\alpha)}(n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is defined to be the sum of the 𝛼-th power of the positive divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0003.png\" /> <jats:tex-math>n\\in\\mathbb{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and construct the matrix domains <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi>p</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0004.png\" /> <jats:tex-math>\\ell_{p}(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0005.png\" /> <jats:tex-math>0&lt;p&lt;\\infty</jats:tex-math> </jats:alternatives> </jats:inline-formula>), <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0006.png\" /> <jats:tex-math>c_{0}(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0007.png\" /> <jats:tex-math>c(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0008.png\" /> <jats:tex-math>\\ell_{\\infty}(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> defined by the matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0009.png\" /> <jats:tex-math>\\mathfrak{D}^{\\alpha}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We develop Schauder bases and determine 𝛼-, 𝛽- and 𝛾-duals of these new spaces. We characterize some matrix transformation from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi>p</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0004.png\" /> <jats:tex-math>\\ell_{p}(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0006.png\" /> <jats:tex-math>c_{0}(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0007.png\" /> <jats:tex-math>c(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0008.png\" /> <jats:tex-math>\\ell_{\\infty}(\\mathfrak{D}^{\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0014.png\" /> <jats:tex-math>\\ell_{\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, 𝑐, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0015.png\" /> <jats:tex-math>c_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0016.png\" /> <jats:tex-math>\\ell_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, we determine some criteria for compactness of an operator (or matrix) from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>X</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi>p</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi mathvariant=\"fraktur\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0017.png\" /> <jats:tex-math>X\\in\\{\\ell_{p}(\\mathfrak{D}^{\\alpha}),c_{0}(\\mathfrak{D}^{\\alpha}),c(\\mathfrak{D}^{\\alpha}),\\ell_{\\infty}(\\mathfrak{D}^{\\alpha})\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0014.png\" /> <jats:tex-math>\\ell_{\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, 𝑐, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0015.png\" /> <jats:tex-math>c_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0138_ineq_0016.png\" /> <jats:tex-math>\\ell_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators\",\"authors\":\"Taja Yaying, Nipen Saikia, Mohammad Mursaleen\",\"doi\":\"10.1515/forum-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Define an infinite matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msubsup> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mi>α</m:mi> </m:msubsup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0001.png\\\" /> <jats:tex-math>\\\\mathfrak{D}^{\\\\alpha}=(d^{\\\\alpha}_{n,v})</jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>d</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mi>α</m:mi> </m:msubsup> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\\\"5pt\\\" displaystyle=\\\"true\\\" rowspacing=\\\"0pt\\\"> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mfrac> <m:msup> <m:mi>v</m:mi> <m:mi>α</m:mi> </m:msup> <m:mrow> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi>v</m:mi> <m:mo>∣</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mrow> <m:mrow> <m:mi>v</m:mi> <m:mo>∤</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_eq_9999.png\\\" /> <jats:tex-math>d^{\\\\alpha}_{n,v}=\\\\begin{cases}\\\\dfrac{v^{\\\\alpha}}{\\\\sigma^{(\\\\alpha)}(n)},&amp;v\\\\mid n,\\\\\\\\ 0,&amp;v\\\\nmid n,\\\\end{cases}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>σ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0002.png\\\" /> <jats:tex-math>\\\\sigma^{(\\\\alpha)}(n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is defined to be the sum of the 𝛼-th power of the positive divisors of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"double-struck\\\">N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0003.png\\\" /> <jats:tex-math>n\\\\in\\\\mathbb{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and construct the matrix domains <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi>p</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0004.png\\\" /> <jats:tex-math>\\\\ell_{p}(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0005.png\\\" /> <jats:tex-math>0&lt;p&lt;\\\\infty</jats:tex-math> </jats:alternatives> </jats:inline-formula>), <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0006.png\\\" /> <jats:tex-math>c_{0}(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0007.png\\\" /> <jats:tex-math>c(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0008.png\\\" /> <jats:tex-math>\\\\ell_{\\\\infty}(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> defined by the matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0009.png\\\" /> <jats:tex-math>\\\\mathfrak{D}^{\\\\alpha}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We develop Schauder bases and determine 𝛼-, 𝛽- and 𝛾-duals of these new spaces. We characterize some matrix transformation from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi>p</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0004.png\\\" /> <jats:tex-math>\\\\ell_{p}(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0006.png\\\" /> <jats:tex-math>c_{0}(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0007.png\\\" /> <jats:tex-math>c(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0008.png\\\" /> <jats:tex-math>\\\\ell_{\\\\infty}(\\\\mathfrak{D}^{\\\\alpha})</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0014.png\\\" /> <jats:tex-math>\\\\ell_{\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, 𝑐, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0015.png\\\" /> <jats:tex-math>c_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0016.png\\\" /> <jats:tex-math>\\\\ell_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, we determine some criteria for compactness of an operator (or matrix) from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>X</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">{</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi>p</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mi>c</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msup> <m:mi mathvariant=\\\"fraktur\\\">D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0017.png\\\" /> <jats:tex-math>X\\\\in\\\\{\\\\ell_{p}(\\\\mathfrak{D}^{\\\\alpha}),c_{0}(\\\\mathfrak{D}^{\\\\alpha}),c(\\\\mathfrak{D}^{\\\\alpha}),\\\\ell_{\\\\infty}(\\\\mathfrak{D}^{\\\\alpha})\\\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0014.png\\\" /> <jats:tex-math>\\\\ell_{\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, 𝑐, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>c</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0015.png\\\" /> <jats:tex-math>c_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0138_ineq_0016.png\\\" /> <jats:tex-math>\\\\ell_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0138\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0138","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过 d n , v α = { v α σ ( α ) ( n ) 定义一个无穷矩阵 D α = ( d n , v α ) \mathfrak{D}^{\alpha}=(d^{\alpha}_{n,v}) 、 v ∣ n , 0 , v ∤ n , d^{\alpha}_{n,v}=\begin{cases}\dfrac{v^{\alpha}}\{sigma^{(\alpha)}(n)},&;v\mid n,(0,&;v\nmid n,end{cases} 其中 σ ( α ) ( n ) \sigma^{(\alpha)}(n) 被定义为 n∈ N n\in\mathbb{N} 的正除数的𝛼次幂之和,并构造矩阵域 ℓ p ( D α ) \ell_{p}(\mathfrak{D}^\{alpha}) ( 0 <;p < ∞ 0<p<;\infty ), c 0 ( D α ) c_{0}(\mathfrak{D}^{\alpha}) , c ( D α ) c(\mathfrak{D}^{\alpha}) 和 ℓ ∞ ( D α ) \ell_{\infty}(\mathfrak{D}^{\alpha}) 由矩阵 D α \mathfrak{D}^{\alpha} 定义。我们建立了 Schauder 基,并确定了这些新空间的 𝛼-、 𝛼-和 𝛾-对偶。我们描述了从ℓ p ( D α ) \ell_{p}(\mathfrak{D}^{\alpha}) , c 0 ( D α ) c_{0}(\mathfrak{D}^{\alpha}) 的矩阵变换、 c ( D α ) c(\mathfrak{D}^{\alpha}) and ℓ ∞ ( D α ) \ell_{\infty}(\mathfrak{D}^{\alpha}) to ℓ ∞ \ell_{\infty} , 𝑐, c 0 c_{0} 和 ℓ 1 \ell_{1} 。此外,我们还确定了 X∈ { ℓ p ( D α ) , c 0 ( D α ) , c ( D α ) , ℓ ∞ ( D α ) } 的算子(或矩阵)紧凑性的一些标准。 X\in\{\ell_{p}(\mathfrak{D}^{\alpha}),c_{0}(\mathfrak{D}^{\alpha}),c(\mathfrak{D}^{\alpha}),\ell_{\infty}(\mathfrak{D}^{\alpha})\} to ℓ ∞ \ell_{\infty} , 𝑐, c 0 c_{0} 或 ℓ 1 \ell_{1} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators
Define an infinite matrix D α = ( d n , v α ) \mathfrak{D}^{\alpha}=(d^{\alpha}_{n,v}) by d n , v α = { v α σ ( α ) ( n ) , v n , 0 , v n , d^{\alpha}_{n,v}=\begin{cases}\dfrac{v^{\alpha}}{\sigma^{(\alpha)}(n)},&v\mid n,\\ 0,&v\nmid n,\end{cases} where σ ( α ) ( n ) \sigma^{(\alpha)}(n) is defined to be the sum of the 𝛼-th power of the positive divisors of n N n\in\mathbb{N} , and construct the matrix domains p ( D α ) \ell_{p}(\mathfrak{D}^{\alpha}) ( 0 < p < 0<p<\infty ), c 0 ( D α ) c_{0}(\mathfrak{D}^{\alpha}) , c ( D α ) c(\mathfrak{D}^{\alpha}) and ( D α ) \ell_{\infty}(\mathfrak{D}^{\alpha}) defined by the matrix D α \mathfrak{D}^{\alpha} . We develop Schauder bases and determine 𝛼-, 𝛽- and 𝛾-duals of these new spaces. We characterize some matrix transformation from p ( D α ) \ell_{p}(\mathfrak{D}^{\alpha}) , c 0 ( D α ) c_{0}(\mathfrak{D}^{\alpha}) , c ( D α ) c(\mathfrak{D}^{\alpha}) and ( D α ) \ell_{\infty}(\mathfrak{D}^{\alpha}) to \ell_{\infty} , 𝑐, c 0 c_{0} and 1 \ell_{1} . Furthermore, we determine some criteria for compactness of an operator (or matrix) from X { p ( D α ) , c 0 ( D α ) , c ( D α ) , ( D α ) } X\in\{\ell_{p}(\mathfrak{D}^{\alpha}),c_{0}(\mathfrak{D}^{\alpha}),c(\mathfrak{D}^{\alpha}),\ell_{\infty}(\mathfrak{D}^{\alpha})\} to \ell_{\infty} , 𝑐, c 0 c_{0} or 1 \ell_{1} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信