随机 p-adic 矩阵角核的联合分布 II

IF 1 3区 数学 Q1 MATHEMATICS
Jiwan Jung, Jungin Lee
{"title":"随机 p-adic 矩阵角核的联合分布 II","authors":"Jiwan Jung, Jungin Lee","doi":"10.1515/forum-2023-0131","DOIUrl":null,"url":null,"abstract":"In this paper, we study the combinatorial relations between the cokernels <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0646.png\" /> <jats:tex-math>{\\operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0323.png\" /> <jats:tex-math>{1\\leq i\\leq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrix over the ring of <jats:italic>p</jats:italic>-adic integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0431.png\" /> <jats:tex-math>{I_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> identity matrix and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0903.png\" /> <jats:tex-math>{x_{1},\\dots,x_{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are elements of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose reductions modulo <jats:italic>p</jats:italic> are distinct. For a positive integer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>≤</m:mo> <m:mn>4</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0813.png\" /> <jats:tex-math>{m\\leq 4}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> </m:mrow> <m:mo>∈</m:mo> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0902.png\" /> <jats:tex-math>{x_{1},\\dots,x_{m}\\in\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we determine the set of <jats:italic>m</jats:italic>-tuples of finitely generated <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0263.png\" /> <jats:tex-math>{(H_{1},\\dots,H_{m})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0007.png\" /> <jats:tex-math>(\\operatorname{cok}(A_{n}+px_{1}I_{n}),\\dots,\\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\\dots,H_{m})</jats:tex-math> </jats:alternatives> </jats:disp-formula> for some matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also prove that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> Haar random matrix over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for each positive integer <jats:italic>n</jats:italic>, then the joint distribution of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0646.png\" /> <jats:tex-math>{\\operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0323.png\" /> <jats:tex-math>{1\\leq i\\leq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>) converges as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0824.png\" /> <jats:tex-math>{n\\rightarrow\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint distribution of the cokernels of random p-adic matrices II\",\"authors\":\"Jiwan Jung, Jungin Lee\",\"doi\":\"10.1515/forum-2023-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the combinatorial relations between the cokernels <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0646.png\\\" /> <jats:tex-math>{\\\\operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0323.png\\\" /> <jats:tex-math>{1\\\\leq i\\\\leq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0378.png\\\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0825.png\\\" /> <jats:tex-math>{n\\\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrix over the ring of <jats:italic>p</jats:italic>-adic integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0584.png\\\" /> <jats:tex-math>{\\\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0431.png\\\" /> <jats:tex-math>{I_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0825.png\\\" /> <jats:tex-math>{n\\\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> identity matrix and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0903.png\\\" /> <jats:tex-math>{x_{1},\\\\dots,x_{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are elements of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0584.png\\\" /> <jats:tex-math>{\\\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose reductions modulo <jats:italic>p</jats:italic> are distinct. For a positive integer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>m</m:mi> <m:mo>≤</m:mo> <m:mn>4</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0813.png\\\" /> <jats:tex-math>{m\\\\leq 4}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> </m:mrow> <m:mo>∈</m:mo> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0902.png\\\" /> <jats:tex-math>{x_{1},\\\\dots,x_{m}\\\\in\\\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we determine the set of <jats:italic>m</jats:italic>-tuples of finitely generated <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0584.png\\\" /> <jats:tex-math>{\\\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0263.png\\\" /> <jats:tex-math>{(H_{1},\\\\dots,H_{m})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\\\"normal\\\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0007.png\\\" /> <jats:tex-math>(\\\\operatorname{cok}(A_{n}+px_{1}I_{n}),\\\\dots,\\\\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\\\\dots,H_{m})</jats:tex-math> </jats:alternatives> </jats:disp-formula> for some matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0378.png\\\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also prove that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0378.png\\\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0825.png\\\" /> <jats:tex-math>{n\\\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> Haar random matrix over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0584.png\\\" /> <jats:tex-math>{\\\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for each positive integer <jats:italic>n</jats:italic>, then the joint distribution of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>cok</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0646.png\\\" /> <jats:tex-math>{\\\\operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0323.png\\\" /> <jats:tex-math>{1\\\\leq i\\\\leq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>) converges as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0131_eq_0824.png\\\" /> <jats:tex-math>{n\\\\rightarrow\\\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0131\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将研究鞅 cok ( A n + p x i I n ) {operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 ≤ i ≤ m {1\leq i\leq m} ) 之间的组合关系,其中 A n {A_{n}} 是 p-adic 整数环上的 n × n {n\times n} 矩阵。 I n {I_{n}} 是 n × n {n\times n} 的标识矩阵,x 1 , ... , x m {x_{1},\dots,x_{m}} 是ℤ p {mathbb{Z}_{p}} 的元素,它们的还原模数 p 是不同的。对于正整数 m ≤ 4 {m\leq 4} 并且给定 x 1 , ... , x m ∈ ℤ p {x_{1},\dots,x_{m}\in\mathbb{Z}_{p}}, 我们可以确定 m-t 集。 ,我们确定有限生成的ℤ p {x_{1},\dots,x_{m}\in\mathbb{Z}_{p}} 的 m 元组集合。 -模块 ( H 1 , ... , H m ) {(H_{1},\dots,H_{m})} ,其中 ( cok ( A n + p x 1 I n ) , ... , cok ( A n + p x m I n ) ) = ( H 1 , ... , H m ) (\operator) {(H_{1},\dots,H_{m})} 。, H m ) (\operatorname{cok}(A_{n}+px_{1}I_{n}),\dots,\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\dots,H_{m}) for some matrix A n {A_{n}}. .我们还可以证明,如果 A n {A_{n}} 是一个 n × n {n\times n} 的哈尔随机矩阵。 则 cok ( A n + p x i I n ) {operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 ≤ i ≤ m {1\leq i\leq m} ) 的联合分布在 n → ∞ {n\rightarrow\infty} 时收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint distribution of the cokernels of random p-adic matrices II
In this paper, we study the combinatorial relations between the cokernels cok ( A n + p x i I n ) {\operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 i m {1\leq i\leq m} ), where A n {A_{n}} is an n × n {n\times n} matrix over the ring of p-adic integers p {\mathbb{Z}_{p}} , I n {I_{n}} is the n × n {n\times n} identity matrix and x 1 , , x m {x_{1},\dots,x_{m}} are elements of p {\mathbb{Z}_{p}} whose reductions modulo p are distinct. For a positive integer m 4 {m\leq 4} and given x 1 , , x m p {x_{1},\dots,x_{m}\in\mathbb{Z}_{p}} , we determine the set of m-tuples of finitely generated p {\mathbb{Z}_{p}} -modules ( H 1 , , H m ) {(H_{1},\dots,H_{m})} for which ( cok ( A n + p x 1 I n ) , , cok ( A n + p x m I n ) ) = ( H 1 , , H m ) (\operatorname{cok}(A_{n}+px_{1}I_{n}),\dots,\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\dots,H_{m}) for some matrix A n {A_{n}} . We also prove that if A n {A_{n}} is an n × n {n\times n} Haar random matrix over p {\mathbb{Z}_{p}} for each positive integer n, then the joint distribution of cok ( A n + p x i I n ) {\operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 i m {1\leq i\leq m} ) converges as n {n\rightarrow\infty} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信