Joint distribution of the cokernels of random p-adic matrices II
IF 1
3区 数学
Q1 MATHEMATICS
Jiwan Jung, Jungin Lee
求助PDF
{"title":"Joint distribution of the cokernels of random p-adic matrices II","authors":"Jiwan Jung, Jungin Lee","doi":"10.1515/forum-2023-0131","DOIUrl":null,"url":null,"abstract":"In this paper, we study the combinatorial relations between the cokernels <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>cok</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0646.png\" /> <jats:tex-math>{\\operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0323.png\" /> <jats:tex-math>{1\\leq i\\leq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>), where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> matrix over the ring of <jats:italic>p</jats:italic>-adic integers <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0431.png\" /> <jats:tex-math>{I_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> identity matrix and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0903.png\" /> <jats:tex-math>{x_{1},\\dots,x_{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are elements of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose reductions modulo <jats:italic>p</jats:italic> are distinct. For a positive integer <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>≤</m:mo> <m:mn>4</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0813.png\" /> <jats:tex-math>{m\\leq 4}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> </m:mrow> <m:mo>∈</m:mo> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0902.png\" /> <jats:tex-math>{x_{1},\\dots,x_{m}\\in\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we determine the set of <jats:italic>m</jats:italic>-tuples of finitely generated <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0263.png\" /> <jats:tex-math>{(H_{1},\\dots,H_{m})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for which <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>cok</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>cok</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>H</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0007.png\" /> <jats:tex-math>(\\operatorname{cok}(A_{n}+px_{1}I_{n}),\\dots,\\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\\dots,H_{m})</jats:tex-math> </jats:alternatives> </jats:disp-formula> for some matrix <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also prove that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0378.png\" /> <jats:tex-math>{A_{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>×</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0825.png\" /> <jats:tex-math>{n\\times n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> Haar random matrix over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ℤ</m:mi> <m:mi>p</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0584.png\" /> <jats:tex-math>{\\mathbb{Z}_{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for each positive integer <jats:italic>n</jats:italic>, then the joint distribution of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>cok</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>A</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:msub> <m:mi>x</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo></m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0646.png\" /> <jats:tex-math>{\\operatorname{cok}(A_{n}+px_{i}I_{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0323.png\" /> <jats:tex-math>{1\\leq i\\leq m}</jats:tex-math> </jats:alternatives> </jats:inline-formula>) converges as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0131_eq_0824.png\" /> <jats:tex-math>{n\\rightarrow\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this paper, we study the combinatorial relations between the cokernels cok ( A n + p x i I n ) {\operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 ≤ i ≤ m {1\leq i\leq m} ), where A n {A_{n}} is an n × n {n\times n} matrix over the ring of p -adic integers ℤ p {\mathbb{Z}_{p}} , I n {I_{n}} is the n × n {n\times n} identity matrix and x 1 , … , x m {x_{1},\dots,x_{m}} are elements of ℤ p {\mathbb{Z}_{p}} whose reductions modulo p are distinct. For a positive integer m ≤ 4 {m\leq 4} and given x 1 , … , x m ∈ ℤ p {x_{1},\dots,x_{m}\in\mathbb{Z}_{p}} , we determine the set of m -tuples of finitely generated ℤ p {\mathbb{Z}_{p}} -modules ( H 1 , … , H m ) {(H_{1},\dots,H_{m})} for which ( cok ( A n + p x 1 I n ) , … , cok ( A n + p x m I n ) ) = ( H 1 , … , H m ) (\operatorname{cok}(A_{n}+px_{1}I_{n}),\dots,\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\dots,H_{m}) for some matrix A n {A_{n}} . We also prove that if A n {A_{n}} is an n × n {n\times n} Haar random matrix over ℤ p {\mathbb{Z}_{p}} for each positive integer n , then the joint distribution of cok ( A n + p x i I n ) {\operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 ≤ i ≤ m {1\leq i\leq m} ) converges as n → ∞ {n\rightarrow\infty} .
随机 p-adic 矩阵角核的联合分布 II
在本文中,我们将研究鞅 cok ( A n + p x i I n ) {operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 ≤ i ≤ m {1\leq i\leq m} ) 之间的组合关系,其中 A n {A_{n}} 是 p-adic 整数环上的 n × n {n\times n} 矩阵。 I n {I_{n}} 是 n × n {n\times n} 的标识矩阵,x 1 , ... , x m {x_{1},\dots,x_{m}} 是ℤ p {mathbb{Z}_{p}} 的元素,它们的还原模数 p 是不同的。对于正整数 m ≤ 4 {m\leq 4} 并且给定 x 1 , ... , x m ∈ ℤ p {x_{1},\dots,x_{m}\in\mathbb{Z}_{p}}, 我们可以确定 m-t 集。 ,我们确定有限生成的ℤ p {x_{1},\dots,x_{m}\in\mathbb{Z}_{p}} 的 m 元组集合。 -模块 ( H 1 , ... , H m ) {(H_{1},\dots,H_{m})} ,其中 ( cok ( A n + p x 1 I n ) , ... , cok ( A n + p x m I n ) ) = ( H 1 , ... , H m ) (\operator) {(H_{1},\dots,H_{m})} 。, H m ) (\operatorname{cok}(A_{n}+px_{1}I_{n}),\dots,\operatorname{cok}(A_{n}+px_{m}I_% {n}))=(H_{1},\dots,H_{m}) for some matrix A n {A_{n}}. .我们还可以证明,如果 A n {A_{n}} 是一个 n × n {n\times n} 的哈尔随机矩阵。 则 cok ( A n + p x i I n ) {operatorname{cok}(A_{n}+px_{i}I_{n})} ( 1 ≤ i ≤ m {1\leq i\leq m} ) 的联合分布在 n → ∞ {n\rightarrow\infty} 时收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。