Fundamental properties of Cauchy–Szegő projection on quaternionic Siegel upper half space and applications

IF 1 3区 数学 Q1 MATHEMATICS
Der-Chen Chang, Xuan Thinh Duong, Ji Li, Wei Wang, Qingyan Wu
{"title":"Fundamental properties of Cauchy–Szegő projection on quaternionic Siegel upper half space and applications","authors":"Der-Chen Chang, Xuan Thinh Duong, Ji Li, Wei Wang, Qingyan Wu","doi":"10.1515/forum-2024-0049","DOIUrl":null,"url":null,"abstract":"We investigate the Cauchy–Szegő projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy–Szegő kernel and prove that the Cauchy–Szegő kernel is nonzero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy–Szegő projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>H</m:mi> <m:mi>p</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0049_eq_0488.png\" /> <jats:tex-math>{H^{p}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on quaternionic Siegel upper half space for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mn>2</m:mn> <m:mn>3</m:mn> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0049_eq_0631.png\" /> <jats:tex-math>{\\frac{2}{3}&lt;p\\leq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we establish the characterisation of singular values of the commutator of Cauchy–Szegő projection based on the kernel estimates. The quaternionic structure (lack of commutativity) is encoded in the symmetry groups of regular functions and the associated partial differential equations.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the Cauchy–Szegő projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy–Szegő kernel and prove that the Cauchy–Szegő kernel is nonzero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy–Szegő projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space H p {H^{p}} on quaternionic Siegel upper half space for 2 3 < p 1 {\frac{2}{3}<p\leq 1} . Moreover, we establish the characterisation of singular values of the commutator of Cauchy–Szegő projection based on the kernel estimates. The quaternionic structure (lack of commutativity) is encoded in the symmetry groups of regular functions and the associated partial differential equations.
四元西格尔上半空间考奇-塞格投影的基本性质及其应用
我们研究了四元西格尔上半空间的 Cauchy-Szegő 投影,得到了 Cauchy-Szegő 内核的点(高阶)正则性估计,并证明了 Cauchy-Szegő 内核处处非零,从而进一步得到了非退化的点下界。作为应用,我们证明了四元海森堡群上每个原子上的 Cauchy-Szegő 投影的均匀有界性,并用它给出了 2 3 < p ≤ 1 {\frac{2}{3}<p\leq 1} 时四元西格尔上半空间上正则哈代空间 H p {H^{p}} 的原子分解。此外,我们还基于核估计建立了考奇-塞格ő 投影换元的奇异值特征。四元数结构(缺乏换元性)被编码在正则函数的对称组和相关偏微分方程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信