具有无平方阶循环全局群的紧凑平坦流形基群的无穷属

IF 1 3区 数学 Q1 MATHEMATICS
Genildo de Jesus Nery
{"title":"具有无平方阶循环全局群的紧凑平坦流形基群的无穷属","authors":"Genildo de Jesus Nery","doi":"10.1515/forum-2021-0298","DOIUrl":null,"url":null,"abstract":"In this article, we study the extent to which an <jats:italic>n</jats:italic>-dimensional compact flat manifold with the cyclic holonomy group of square-free order may be distinguished by the finite quotients of its fundamental group. In particular, we display a formula for the cardinality of profinite genus of the fundamental group of an <jats:italic>n</jats:italic>-dimensional compact flat manifold with the cyclic holonomy group of square-free order.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order\",\"authors\":\"Genildo de Jesus Nery\",\"doi\":\"10.1515/forum-2021-0298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the extent to which an <jats:italic>n</jats:italic>-dimensional compact flat manifold with the cyclic holonomy group of square-free order may be distinguished by the finite quotients of its fundamental group. In particular, we display a formula for the cardinality of profinite genus of the fundamental group of an <jats:italic>n</jats:italic>-dimensional compact flat manifold with the cyclic holonomy group of square-free order.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2021-0298\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2021-0298","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有无平方阶循环全局群的 n 维紧凑平面流形在多大程度上可以通过其基群的有限商来区分。特别是,我们展示了一个具有无平方阶循环全局群的 n 维紧凑平面流形的基群无穷属的心数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
In this article, we study the extent to which an n-dimensional compact flat manifold with the cyclic holonomy group of square-free order may be distinguished by the finite quotients of its fundamental group. In particular, we display a formula for the cardinality of profinite genus of the fundamental group of an n-dimensional compact flat manifold with the cyclic holonomy group of square-free order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信