An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes

IF 1 3区 数学 Q1 MATHEMATICS
Jesse Thorner, Asif Zaman
{"title":"An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes","authors":"Jesse Thorner, Asif Zaman","doi":"10.1515/forum-2023-0091","DOIUrl":null,"url":null,"abstract":"We make explicit Bombieri’s refinement of Gallagher’s log-free “large sieve density estimate near <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>σ</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0510.png\" /> <jats:tex-math>{\\sigma=1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>” for Dirichlet <jats:italic>L</jats:italic>-functions. We use this estimate and recent work of Green to prove that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0355.png\" /> <jats:tex-math>{N\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an integer, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>A</m:mi> <m:mo>⊆</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:mi>N</m:mi> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0326.png\" /> <jats:tex-math>{A\\subseteq\\{1,\\ldots,N\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and for all primes <jats:italic>p</jats:italic> no two elements in <jats:italic>A</jats:italic> differ by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0579.png\" /> <jats:tex-math>{p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mo>≪</m:mo> <m:msup> <m:mi>N</m:mi> <m:mrow> <m:mn>1</m:mn> <m:mo>-</m:mo> <m:msup> <m:mn>10</m:mn> <m:mrow> <m:mo>-</m:mo> <m:mn>18</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0091_eq_0630.png\" /> <jats:tex-math>{|A|\\ll N^{1-10^{-18}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This strengthens a theorem of Sárközy.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"52 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We make explicit Bombieri’s refinement of Gallagher’s log-free “large sieve density estimate near σ = 1 {\sigma=1} ” for Dirichlet L-functions. We use this estimate and recent work of Green to prove that if N 2 {N\geq 2} is an integer, A { 1 , , N } {A\subseteq\{1,\ldots,N\}} , and for all primes p no two elements in A differ by p - 1 {p-1} , then | A | N 1 - 10 - 18 {|A|\ll N^{1-10^{-18}}} . This strengthens a theorem of Sárközy.
关于移位素数的邦比里无对数密度估计和萨尔科齐定理的明确版本
我们明确了 Bombieri 对 Gallagher 的无对数 "σ = 1 {\sigma=1} 附近的大筛密度估计 "的改进。 的 "大筛密度估计"。我们利用这一估计和格林的最新研究成果证明,如果 N ≥ 2 {N\geq 2} 是整数,则 A ⊆ { 1 , ... , N } {A\subseteq\{1,\ldots,N\}} 对于所有素数 p,A 中没有两个元素相差 p - 1 {p-1} ,那么 | A | ≪ N 1 - 10 - 18 {|A|\ll N^{1-10^{-18}}} 。这加强了萨尔科齐的一个定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信