FEMS microbiology ecology最新文献

筛选
英文 中文
Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus). 短喙针鼹(Tachyglossus aculeatus)哺乳期微生物群的变化。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf036
Isabella Wilson, Tahlia Perry, Raphael Eisenhofer, Peggy Rismiller, Michelle Shaw, Frank Grutzner
{"title":"Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus).","authors":"Isabella Wilson, Tahlia Perry, Raphael Eisenhofer, Peggy Rismiller, Michelle Shaw, Frank Grutzner","doi":"10.1093/femsec/fiaf036","DOIUrl":"10.1093/femsec/fiaf036","url":null,"abstract":"<p><p>Monotreme and marsupial development is characterized by a short gestation, with young exposed to the environment at an early developmental stage and supported by a long lactation in the pouch, pseudo-pouch, or burrow. The lack of a functional adaptive immune system in these altricial young raises questions about how they survive in a microbe-rich environment. Previous studies on marsupial pouches have revealed changes to pouch microbe composition during lactation, but no information is available in monotremes. We investigated changes in the echidna pseudo-pouch microbiota (n = 22) during different stages of the reproductive cycle and whether this differs between wild and zoo-managed animals. Metataxonomic profiling using 16S rRNA gene sequencing revealed that pseudo-pouch microbial communities undergo dramatic changes during lactation, with significant differences in taxonomic composition compared with samples taken outside of breeding season or during courtship and mating. This suggests that the echidna pseudo-pouch environment changes during lactation to accommodate young that lack a functional adaptive immune system. Furthermore, captivity was not found to have a significant effect on pseudo-pouch microbiota. This study pioneers pouch microbiota research in monotremes, provides new biological information on echidna reproduction, and may also provide information about the effects of captive management to inform breeding programmes in the future.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143803030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogeological and geological partitioning of iron and sulfur cycling bacterial consortia in subsurface coal-based mine waters. 煤基地下水中铁硫循环菌群的水文地质与地质分配。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf039
André Soares, Sara Maria Edwards Rassner, Arwyn Edwards, Gareth Farr, Nia Blackwell, Henrik Sass, Guglielmo Persiani, David Schofield, Andrew C Mitchell
{"title":"Hydrogeological and geological partitioning of iron and sulfur cycling bacterial consortia in subsurface coal-based mine waters.","authors":"André Soares, Sara Maria Edwards Rassner, Arwyn Edwards, Gareth Farr, Nia Blackwell, Henrik Sass, Guglielmo Persiani, David Schofield, Andrew C Mitchell","doi":"10.1093/femsec/fiaf039","DOIUrl":"https://doi.org/10.1093/femsec/fiaf039","url":null,"abstract":"<p><p>Pyrite oxidation drives iron and sulfur availability across Earth's subsurface and is partly microbially mediated. Subsurface microbial communities accelerate this process at circumneutral pH directly by weathering pyritic surfaces and indirectly by causing changes to the surrounding microenvironment, thereby further accelerating pyrite weathering. However, our understanding of community structure dynamics and associated biogeochemistry in Fe- and S-rich lithologies, e.g. pyritic coal, is limited. Here, we present the first comprehensive regional and seasonal genus-level survey of bacterial groundwater communities in a pyritic coal-based aquifer in the South Wales Coalfield (SWC), using 16S rRNA gene amplicon sequencing. Seasonal changes in community structure were limited, suggesting limited influence of surface processes on subsurface communities. Instead, hydrogeologically distinct mine water blocks (MWB) and coal rank largely explained bacterial community structure variation across sites. Fe(II)-oxidizing Betaproteobacteriales genera Gallionella and Sideroxydans dominated the bacterial communities across nine sites and seven MWBs, while three sites within a single MWB, were dominated by S-oxidizing Epsilonbacteraeota genera Sulfuricurvum and Sulfurovum. The cooccurrence of pairs of Fe(II)- and S-oxidizing bacterial genera suggests functional redundancy, which coupled with genus-specific morphologies and life strategies, indicates the importance of distinct environmental and ecological niches within the SWC groundwater at seasonal and regional scales.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143991890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles as viral countermeasures: dampening of oscillations and reduction of extinction risk. 细胞外囊泡作为病毒对策:抑制振荡和减少灭绝风险。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf030
Ferdi L Hellweger
{"title":"Extracellular vesicles as viral countermeasures: dampening of oscillations and reduction of extinction risk.","authors":"Ferdi L Hellweger","doi":"10.1093/femsec/fiaf030","DOIUrl":"https://doi.org/10.1093/femsec/fiaf030","url":null,"abstract":"<p><p>Microbes produce extracellular vesicles (EVs, tiny membrane enclosures) that can transport some \"cargo\" (signaling molecules, proteins/enzymes, toxins, and nucleic acids) away from themselves or to other cells. EVs have also been shown to adsorb virus (phage) particles and inhibit infection, so another potential function is to serve as decoys for virus infection. However, the fitness benefit has not been explored quantitatively. Here, three existing mathematical models are extended to include EVs and parameterized based on literature. Simulations include a number of environments (lab culture and ambient), conditions (equilibrium and oscillating, i.e. predator-prey cycles), and bacteria (including enteric Escherichia coli and marine Prochlorococcus). Hosts invest, on average, ∼10% of resources into EV production. The models predict that producing EVs typically results in relatively minor increases in average host concentration (average ∼4.3% of log concentration). However, under oscillating conditions, EVs can substantially dampen and, in most cases, completely eliminate fluctuations, thereby increasing the minimum concentration and reducing extinction risk. These results provide insights into the fitness benefit of EVs as viral countermeasures, and they constitute a starting point for including EVs in ecosystem models.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weberviruses are gut-associated phages that infect Klebsiella spp. 韦伯病毒是感染克雷伯氏菌的肠道相关噬菌体。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf043
Samuel J T Dawson, Preetha Shibu, Sara Garnett, Fiona Newberry, Thomas C Brook, Tobi Tijani, Magdalena Kujawska, Lindsay J Hall, Anne L McCartney, David Negus, Lesley Hoyles
{"title":"Weberviruses are gut-associated phages that infect Klebsiella spp.","authors":"Samuel J T Dawson, Preetha Shibu, Sara Garnett, Fiona Newberry, Thomas C Brook, Tobi Tijani, Magdalena Kujawska, Lindsay J Hall, Anne L McCartney, David Negus, Lesley Hoyles","doi":"10.1093/femsec/fiaf043","DOIUrl":"https://doi.org/10.1093/femsec/fiaf043","url":null,"abstract":"<p><p>Weberviruses are bacteriophages (phages) that can infect and lyse clinically relevant, multidrug-resistant (MDR) strains of Klebsiella. They are an attractive therapeutic option to tackle Klebsiella infections due to their high burst sizes, long shelf life, and associated depolymerases. In this study, we isolated and characterized seven new lytic phages and compared their genomes with those of their closest relatives. Gene-sharing network, ViPTree proteome, and terL gene-sequence-based analyses incorporating all publicly available webervirus genomes [n = 258 from isolates, n = 65 from metagenome-assembled genome (MAG) datasets] confirmed the seven phages as members of the genus Webervirus and identified a novel genus (Defiantjazzvirus) within the family Drexlerviridae. Using our curated database of 265 isolated phage genomes and 65 MAGs (n = 330 total), we found that weberviruses are distributed globally and primarily associated with samples originating from the gut: sewage (154/330, 47%), wastewater (83/330, 25%), and human faeces (66/330, 20%). We identified three distinct clusters of potential depolymerases encoded within the 330 genomes. Due to their global distribution, frequency of isolation and lytic activity against the MDR clinical Klebsiella strains used in this study, we conclude that weberviruses and their depolymerases show promise for development as therapeutic agents against Klebsiella spp.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143989209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrate-reducing microorganisms prevent souring of an oil field produced water storage pond. 硝酸还原微生物防止油田采出水储存池酸化。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf041
Gabrielle Scheffer, Jayne Rattray, Paul Evans, Wei Shi, Srijak Bhatnagar, Casey R J Hubert
{"title":"Nitrate-reducing microorganisms prevent souring of an oil field produced water storage pond.","authors":"Gabrielle Scheffer, Jayne Rattray, Paul Evans, Wei Shi, Srijak Bhatnagar, Casey R J Hubert","doi":"10.1093/femsec/fiaf041","DOIUrl":"https://doi.org/10.1093/femsec/fiaf041","url":null,"abstract":"<p><p>Nitrate addition for mitigating sulfide production in oil field systems has been studied in laboratory settings and in some subsurface oil reservoirs. To promote water recycling and reuse associated with oil reservoirs produced by hydraulic fracturing, high-salinity produced waters are temporarily stored in surface ponds prior to subsequent reinjection into the subsurface. In this study, nitrate was added directly to a storage pond to prevent sulfide accumulation. DNA sequencing of pond water over a 4-week period revealed a decrease in the proportion of sulfate-reducing microorganisms following nitrate application. Sulfate levels remained stable during this period, whereas nitrate and nitrite fluctuated in the days following the nitrate addition. Metagenome-assembled genomes (MAGs) reconstructed from the pond water microbiome highlighted different organisms with genes for organoheterotrophic and lithoheterotrophic nitrate reduction, whereas genes associated with sulfide production via sulfate or thiosulfate reduction were barely detected. Within those MAGs, genes for acetate metabolism were observed, consistent with acetate decreasing substantially in the pond water in the presence of nitrate. After nitrate was consumed an increase in relative abundance of putative autotrophic microorganisms was observed (e.g. Arhodomonas, Guyparkeria, and Psychroflexus), corresponding to a drop in total inorganic carbon measurements in the storage pond. This trial offers an overview on microbial processes taking place in storage pond environments in response to nitrate addition.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143988038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu. 太湖悬浮颗粒物连续体中细菌多样性的粒径依赖性
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf038
Fangwei Fan, Yichen Ren, Zhendu Mao, Biao Li, Chunyan Yu, Jiawei Gao, Yu Gu, Jianing Ding, Huabing Li, Qinglong L Wu
{"title":"Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu.","authors":"Fangwei Fan, Yichen Ren, Zhendu Mao, Biao Li, Chunyan Yu, Jiawei Gao, Yu Gu, Jianing Ding, Huabing Li, Qinglong L Wu","doi":"10.1093/femsec/fiaf038","DOIUrl":"https://doi.org/10.1093/femsec/fiaf038","url":null,"abstract":"<p><p>Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143985639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acquisition of an obligate environmental symbiont may be limited in the arboreal environment. 在乔木环境中,特定环境共生体的获取可能受到限制。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf045
Liam T Sullivan, Suzanne E Kelly, Alison Ravenscraft, Martha S Hunter
{"title":"Acquisition of an obligate environmental symbiont may be limited in the arboreal environment.","authors":"Liam T Sullivan, Suzanne E Kelly, Alison Ravenscraft, Martha S Hunter","doi":"10.1093/femsec/fiaf045","DOIUrl":"https://doi.org/10.1093/femsec/fiaf045","url":null,"abstract":"<p><p>Many eukaryotic organisms have environmentally acquired microbial symbionts. In animals, microbes commonly occupy the gut and may supply critical nutrients. The leaf-footed bug, Leptoglossus zonatus (Coreidae), is a true bug that is dependent upon ingestion of the free-living, soilborne bacterium Caballeronia early in development for growth and reproduction. In 2019 and 2020, we tested the ability of second instar L. zonatus to acquire Caballeronia in the canopy of pomegranate trees where L. zonatus are often found. We compared the acquisition rate of Caballeronia in nymphs left to forage for the symbiont to bugs fed Caballeronia in advance. Additionally, we aimed to determine whether the microhabitat of potential symbiont sources influenced acquisition success. We hypothesized that the acquisition rate would be heterogeneous among treatments. In 2019, ∼30% of experimental bugs acquired Caballeronia, compared to 75% of those fed the symbiont. In 2020, only about 4% of experimental bugs acquired any symbiont. The symbiont composition of caged bugs differed, and strain diversity was reduced relative to wild bugs. We concluded that Caballeronia is present in the canopy environment, but nymphs may fail to acquire it in the fragments of habitat represented by caged branches, suggesting a cost to host dependency on environmentally acquired symbionts.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143994346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring and evaluating microbiome resilience in the gut. 探索和评估肠道微生物群的恢复能力。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf046
Huimin Zhou, Li Tang, Kristin A Fenton, Xiaobo Song
{"title":"Exploring and evaluating microbiome resilience in the gut.","authors":"Huimin Zhou, Li Tang, Kristin A Fenton, Xiaobo Song","doi":"10.1093/femsec/fiaf046","DOIUrl":"https://doi.org/10.1093/femsec/fiaf046","url":null,"abstract":"<p><p>The gut ecosystem is closely related to human gastrointestinal health and overall wellness. Microbiome resilience refers to the capability of a microbial community to resist or recover from perturbations to its original state of balance. So far, there is no consensus on the criteria for assessing microbiome resilience. This article provides new insights into the metrics and techniques for resilience assessment. We discussed several potential parameters, such as microbiome structure, keystone species, biomarkers, persistence degree, recovery rate, and various research techniques in microbiology, metagenomics, biochemistry, and dynamic modeling. The article further explores the factors that influence the gut microbiome resilience. The microbiome structure (i.e. abundance and diversity), keystone species, and microbe-microbe interplays determine microbiome resilience. Microorganisms employ a variety of mechanisms to achieve the microbiome resilience, including flexible metabolism, quorum sensing, functional redundancy, microbial cooperation, and competition. Host-microbe interactions play a crucial role in maintaining microbiome stability and functionality. Unlike other articles, we focus on the regulation of host immune system on microbiome resilience. The immune system facilitates bacterial preservation and colonization, community construction, probiotic protection, and pathogen elimination through the mechanisms of immunological tolerance, immune-driven microbial compartmentalization, and immune inclusion and exclusion. Microbial immunomodulation indirectly modulates microbiome resilience.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143975744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogenetic clustering of microbial communities as a biomarker for chemical pollution. 微生物群落的系统发育聚类作为化学污染的生物标志物。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf047
Thomas P Smith, Rachel Hope, Thomas Bell
{"title":"Phylogenetic clustering of microbial communities as a biomarker for chemical pollution.","authors":"Thomas P Smith, Rachel Hope, Thomas Bell","doi":"10.1093/femsec/fiaf047","DOIUrl":"https://doi.org/10.1093/femsec/fiaf047","url":null,"abstract":"<p><p>Microbial communities play a critical role in ecosystem functioning and offer promising potential as bioindicators of chemical pollution in aquatic environments. Here we examine the responses of both bacterial isolates and microbial communities to a range of pollutants, focusing on the phylogenetic predictability of their responses. We tested the growth inhibition of environmental bacterial isolates by 168 agricultural pollutants recently shown to have off-purpose antimicrobial activity in human gut bacteria. We also tested the growth responses of whole microbial communities to the same chemical pollutants and quantified changes in the composition of select communities, to link compositional changes to functioning. We found that bacterial isolates exhibited a strong phylogenetic signal in their growth responses, with closely related taxa responding similarly to chemical stress. In microbial communities, pollutants that significantly impacted isolates also reduced community diversity and growth, causing shifts in community structure toward increased phylogenetic clustering, suggesting environmental filtering. The mean phylogenetic distance effectively captured these shifts, indicating its potential as a simple metric for monitoring pollution. Our findings highlight the predictability of microbial responses to pollution and suggest that microbial-based bioindicators, coupled with rapid sequencing technologies, could transform environmental monitoring.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144005050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foliar infections by Botrytis cinerea modulate the tomato root volatilome and microbiome. 番茄灰霉病对番茄根部挥发物和微生物组的影响。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2025-04-14 DOI: 10.1093/femsec/fiaf042
Muhammad Syamsu Rizaludin, Ana Shein Lee Díaz, Hans Zweers, Jos M Raaijmakers, Paolina Garbeva
{"title":"Foliar infections by Botrytis cinerea modulate the tomato root volatilome and microbiome.","authors":"Muhammad Syamsu Rizaludin, Ana Shein Lee Díaz, Hans Zweers, Jos M Raaijmakers, Paolina Garbeva","doi":"10.1093/femsec/fiaf042","DOIUrl":"https://doi.org/10.1093/femsec/fiaf042","url":null,"abstract":"<p><p>The fungal pathogen Botrytis cinerea causes significant damage to aboveground plant parts, but its impact on root chemistry and microbiome composition is less understood. This study investigated how B. cinerea foliar infection influences the root volatilome and microbiome of two tomato genotypes: wild Solanum pimpinellifolium and domesticated Solanum lycopersicum var. Moneymaker. In the absence of infection, wild tomato roots emitted higher levels of monoterpenes such as α-pinene and terpinene compared to domesticated tomato roots. The fungal infection induced elevated levels of benzyl alcohol and benzofuran in the root headspace and/or rhizosphere of both genotypes, alongside genotype-specific changes. Multivariate analyses revealed that B. cinerea significantly altered bacterial and fungal community compositions in the rhizosphere and rhizoplane, with stronger bacterial community shifts in the rhizoplane. Taxa depletion and enrichment were observed, particularly among Proteobacteria and Ascomycota. Mantel tests showed significant correlations between rhizoplane bacterial community compositions and root-associated volatilome. Notably, enriched bacterial taxa such as Pelomonas and Comamonadaceae positively correlated with benzyl alcohol and benzofuran levels in the root volatilome. These findings demonstrate that B. cinerea foliar infection might induce profound changes in root-associated volatilome and microbiome composition, highlighting its systemic effects on plant root chemistry and microbiome composition.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143960652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信