{"title":"微生物群落的系统发育聚类作为化学污染的生物标志物。","authors":"Thomas P Smith, Rachel Hope, Thomas Bell","doi":"10.1093/femsec/fiaf047","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities play a critical role in ecosystem functioning and offer promising potential as bioindicators of chemical pollution in aquatic environments. Here we examine the responses of both bacterial isolates and microbial communities to a range of pollutants, focusing on the phylogenetic predictability of their responses. We tested the growth inhibition of environmental bacterial isolates by 168 agricultural pollutants recently shown to have off-purpose antimicrobial activity in human gut bacteria. We also tested the growth responses of whole microbial communities to the same chemical pollutants and quantified changes in the composition of select communities, to link compositional changes to functioning. We found that bacterial isolates exhibited a strong phylogenetic signal in their growth responses, with closely related taxa responding similarly to chemical stress. In microbial communities, pollutants that significantly impacted isolates also reduced community diversity and growth, causing shifts in community structure toward increased phylogenetic clustering, suggesting environmental filtering. The mean phylogenetic distance effectively captured these shifts, indicating its potential as a simple metric for monitoring pollution. Our findings highlight the predictability of microbial responses to pollution and suggest that microbial-based bioindicators, coupled with rapid sequencing technologies, could transform environmental monitoring.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067926/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic clustering of microbial communities as a biomarker for chemical pollution.\",\"authors\":\"Thomas P Smith, Rachel Hope, Thomas Bell\",\"doi\":\"10.1093/femsec/fiaf047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial communities play a critical role in ecosystem functioning and offer promising potential as bioindicators of chemical pollution in aquatic environments. Here we examine the responses of both bacterial isolates and microbial communities to a range of pollutants, focusing on the phylogenetic predictability of their responses. We tested the growth inhibition of environmental bacterial isolates by 168 agricultural pollutants recently shown to have off-purpose antimicrobial activity in human gut bacteria. We also tested the growth responses of whole microbial communities to the same chemical pollutants and quantified changes in the composition of select communities, to link compositional changes to functioning. We found that bacterial isolates exhibited a strong phylogenetic signal in their growth responses, with closely related taxa responding similarly to chemical stress. In microbial communities, pollutants that significantly impacted isolates also reduced community diversity and growth, causing shifts in community structure toward increased phylogenetic clustering, suggesting environmental filtering. The mean phylogenetic distance effectively captured these shifts, indicating its potential as a simple metric for monitoring pollution. Our findings highlight the predictability of microbial responses to pollution and suggest that microbial-based bioindicators, coupled with rapid sequencing technologies, could transform environmental monitoring.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"101 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf047\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf047","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Phylogenetic clustering of microbial communities as a biomarker for chemical pollution.
Microbial communities play a critical role in ecosystem functioning and offer promising potential as bioindicators of chemical pollution in aquatic environments. Here we examine the responses of both bacterial isolates and microbial communities to a range of pollutants, focusing on the phylogenetic predictability of their responses. We tested the growth inhibition of environmental bacterial isolates by 168 agricultural pollutants recently shown to have off-purpose antimicrobial activity in human gut bacteria. We also tested the growth responses of whole microbial communities to the same chemical pollutants and quantified changes in the composition of select communities, to link compositional changes to functioning. We found that bacterial isolates exhibited a strong phylogenetic signal in their growth responses, with closely related taxa responding similarly to chemical stress. In microbial communities, pollutants that significantly impacted isolates also reduced community diversity and growth, causing shifts in community structure toward increased phylogenetic clustering, suggesting environmental filtering. The mean phylogenetic distance effectively captured these shifts, indicating its potential as a simple metric for monitoring pollution. Our findings highlight the predictability of microbial responses to pollution and suggest that microbial-based bioindicators, coupled with rapid sequencing technologies, could transform environmental monitoring.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms