Nichole M Giani, Shen Jean Lim, Laurie C Anderson, Audrey T Paterson, Annette Summers Engel, Barbara J Campbell
{"title":"Variation in accessory and horizontal gene transfer-associated genes drives lucinid endosymbiont diversity.","authors":"Nichole M Giani, Shen Jean Lim, Laurie C Anderson, Audrey T Paterson, Annette Summers Engel, Barbara J Campbell","doi":"10.1093/femsec/fiaf074","DOIUrl":"https://doi.org/10.1093/femsec/fiaf074","url":null,"abstract":"<p><p>Lucinid bivalves harbor environmentally acquired endosymbionts within the class Gammaproteobacteria and genus Candidatus Thiodiazotropha. Despite recent studies focused on lucinid endosymbiont genomic and functional diversity, processes influencing species diversity have been understudied. From the analysis of 333 metagenome-assembled genomes (MAGs) from 40 host species across eight waterbodies and 77 distinct locations, 272 were high quality MAGs of Ca. Thiodiazotropha endosymbionts that represented 11 genomospecies. Of those, two new genomospecies from lucinids collected from The Bahamas and Florida (USA) were identified, Ca. Thiodiazotropha fisheri and Ca. Thiodiazotropha grosi. Metabolic specialization was evident, such as potential adaptations to diverse carbon sources based on detection of C1 metabolic genes in eight genomospecies. Genes associated with defense, symbiosis/pathogenesis, and horizontal gene transfer (HGT) were also distinct across genomospecies. For instance, Ca. T. taylori exhibited lower abundances of HGT-associated genes compared to other genomospecies, particularly Ca. T. endolucinida, Ca. T. lotti, and Ca. T. weberae. HGT-associated genes were linked to previously unreported retron-type reverse transcriptases, dsDNA phages, and phage resistance. Collectively, the pangenome highlights how lucinid endosymbiont diversity has been shaped by geographic and host-specific interactions linked to gene loss and HGT through time.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144599871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genomic Survey Reveals no Detectable Bacteriophage Activity in Mycobacterium bovis Across a Large Population.","authors":"Daniela Pinto, Inês Mendes, Mónica V Cunha","doi":"10.1093/femsec/fiaf072","DOIUrl":"https://doi.org/10.1093/femsec/fiaf072","url":null,"abstract":"<p><p>Phages are major drivers of bacterial evolution, yet their ecological and evolutionary interactions with Mycobacterium bovis, a key member of the Mycobacterium tuberculosis complex (MTBC), remain understudied. In this work, we investigate the elusive phage-bacterium interface in M. bovis by integrating comparative genomics of 200 isolates from infected animals with molecular analyses of M. bovis-positive environmental samples. Despite employing diverse and complementary approaches, we found no evidence of active or recent phage infections: no novel prophages beyond the conserved phiRv1, no expansion of CRISPR arrays, and no co-occurrence of M. bovis and mycobacteriophages in host tissues or environmental matrices. Intriguingly, we identified multiple independent excision events of phiRv1 across closely related lineages, suggesting recent prophage mobilization driven by unidentified ecological or genomic triggers. These findings echo previous observations in M. tuberculosis and point toward a stable, phage-scarce landscape across MTBC members. Our results raise compelling questions about the barriers to phage predation in M. bovis, the functionality of its CRISPR-Cas system, and the selective pressures underlying prophage retention and loss. By shedding light on these underexplored dynamics, our study reveals critical gaps in the ecological understanding of M. bovis and highlights opportunities for phage-based innovation in TB control.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144559614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryse D Berkhout, Athanasia Ioannou, Yuvashankar Kavanal Jayaprakash, Caroline M Plugge, Clara Belzer
{"title":"Milk and mucin glycans orchestrate a synthetic infant gut microbiota structure.","authors":"Maryse D Berkhout, Athanasia Ioannou, Yuvashankar Kavanal Jayaprakash, Caroline M Plugge, Clara Belzer","doi":"10.1093/femsec/fiaf069","DOIUrl":"https://doi.org/10.1093/femsec/fiaf069","url":null,"abstract":"<p><p>Glycans are crucial for infant gut microbiota development. Human milk contains prebiotic human milk oligosaccharides (HMOs) that stimulate gut microbes. Simultaneously, the glycan-rich mucus layer develops and attracts mucin glycan-degrading bacteria. As HMOs and mucin are degraded by homologous enzymes, bacterial glycan-degrading abilities overlap. However, less is known about how infant gut microbial communities form when both types of glycans are available. To study this, we created a synthetic community with specialist glycan degraders and cross-feeders from the infant gut (BabyBac). We evaluated it in different in vitro conditions including combinations of diet-derived [HMOs, galactooligosaccharides (GOS), and fructooligosaccarides (FOS)] and mucus glycans. Glycan combinations significantly affected the community composition and metabolic output. The glycan type affected the overall community, with mucin and HMOs being the top drivers of variation. HMOs favoured glycan degraders and cross-feeders, whereas mucin glycan degrader Akkermansia muciniphila was outcompeted. Conversely, when mucin was present, A. muciniphila thrived. Addition of mucin monomers and 2'-FL to GOS/FOS did not reinstate A. muciniphila abundance. This suggests that A. muciniphila cannot compete with infant-related bacteria without the complete mucin structure. Overall, our findings suggest that the interplay between dietary and mucus glycans creates niche differentiation in the infant gut microbiota.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesse Ouwehand, Bregje W Brinkmann, Willie J G M Peijnenburg, Martina G Vijver
{"title":"Microbial custody: key microbiome inhabitant Sphingomonas alleviates silver nanoparticle toxicity in Daphnia magna.","authors":"Jesse Ouwehand, Bregje W Brinkmann, Willie J G M Peijnenburg, Martina G Vijver","doi":"10.1093/femsec/fiaf061","DOIUrl":"10.1093/femsec/fiaf061","url":null,"abstract":"<p><p>Increased usage of nanotechnological applications inevitably leads to exposure of hosts and their associated microbiomes to metallic nanoparticles. Various bacteria within the microbiome harbour mechanisms to protect themselves against metal-related toxicity. These mechanisms have been broadly described in the absence of a host. Here, we studied how silver ion-resistant bacteria isolated from the Daphnia magna microbiome shape the host's exposure to silver nanoparticles. With germfree and mono-associated neonates, the effects of these microbes on the sensitivity of D. magna to silver nanoparticles were studied. By using this approach, a core member of the D. magna microbiome Sphingomonas yanoikuyae was identified to be silver-resistant. Neonates mono-associated with S. yanoikuyae were as sensitive to silver nanoparticles as naturally colonized neonates, whereas mono-association with Microbacterium and germfree neonates had increased sensitivity. Silver ions are the major attribution to toxicity in germfree and Microbacterium-associated neonates, whereas particles contribute more to the toxicity for the naturally- and Sphingomonas-colonized neonates. Sphingomonas accumulated in vivo more silver ions from its local environment than the other D. magna bacterial isolates. The current study shows that bacteria can play a vital role in shaping the speciation of nanomaterials and thereby modifying the toxicity to hosts.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144247230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Yan, Endong Wang, Guo-Shu Wei, Xuenong Xu, Mark R H Hurst, Bo Zhang
{"title":"Microbial dynamics across tri-trophic systems: insights from plant-herbivore-predator interactions.","authors":"Hong Yan, Endong Wang, Guo-Shu Wei, Xuenong Xu, Mark R H Hurst, Bo Zhang","doi":"10.1093/femsec/fiaf065","DOIUrl":"10.1093/femsec/fiaf065","url":null,"abstract":"<p><p>Microbes play a critical role in regulating tri-trophic interactions among plants, herbivores, and their natural enemies, influencing key ecological and evolutionary processes. To fully understand these interactions through the food chain, a well-defined tri-trophic system is required. We investigated microbial dynamics involving plants (beans, cucumbers, and eggplants), spider mites (Tetranychus urticae), and predatory mites (Phytoseiulus persimilis) through 16S rRNA gene sequencing. The results revealed significant variations in microbiota across different trophic levels. Source tracking analysis indicated that microbiota at each trophic level were rarely inherited from the previous one, and deterministic processes played a key role in shaping the endosphere communities of these levels. Most shared zero-radius operational taxonomic units across each trophic level belonged to Pseudomonas, Bacillus, and Staphylococcus. Leaf microbiota differed among plants, while spider mites harbored similar microbiota. Notably, the microbiota of predatory mites on eggplants differed significantly from those on the other two plants. Biomarker selection and correlation analyses revealed that the abundance of Methylobacterium and Stenotrophomonas was strongly correlated with the improved fitness of predatory mites across different plants. Our study highlights the complex and dynamic nature of microbial communities across different trophic levels in a well-defined plant-herbivore-predator system.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 7","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144495440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rashmi Shrestha, Karoliina Huusko, Outi-Maaria Sietiö, Bernhard Schmid, Seraina Lisa Cappeli, Paula Thitz, Stephanie Gerin, Anna-Liisa Laine, Annalea Lohila, Jussi Heinonsalo
{"title":"Impacts of diverse undersown cover crops on seasonal soil microbial properties.","authors":"Rashmi Shrestha, Karoliina Huusko, Outi-Maaria Sietiö, Bernhard Schmid, Seraina Lisa Cappeli, Paula Thitz, Stephanie Gerin, Anna-Liisa Laine, Annalea Lohila, Jussi Heinonsalo","doi":"10.1093/femsec/fiaf068","DOIUrl":"10.1093/femsec/fiaf068","url":null,"abstract":"<p><p>Positive relationships between plant diversity, microbial diversity, and ecosystem functioning have widely been observed in experimental grasslands. However, the impact of cover crop (CC) species diversification on soil microbial diversity and function in croplands remains underexplored. This study investigated how increasing the diversity of undersown CCs affected seasonal properties of soil microbiomes and whether these changes resulted in legacy effects on next-year crops. In barley fields undersown with functionally diverse CCs, soil samples were collected throughout the year to assess microbial properties. To evaluate legacy effects on the following year's barley, soil microorganisms were sequenced from spring samples collected before CC termination. Additionally, a pot experiment using flax was conducted to study how CC diversity influenced arbuscular mycorrhizal (AM) fungal colonization in roots. Results showed that vegetation presence and higher CC richness increased microbial biomass carbon and decreased the microbial metabolic quotient. Legumes' presence reduced microbial respiration. Fungal and AM fungal diversity also increased with CC richness, while legumes helped suppress fungal pathogens. In the pot experiment, presence of both vegetation and legumes positively influenced AM fungal root colonization. Overall, undersowing diverse CCs, particularly legumes, can increase soil microbial diversity and soil health, benefiting both the current and next-year crops.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sakineh Abbasi, Marion Devers-Lamrani, Fabrice Martin-Laurent, Caroline Michel, Sana Romdhane, Nadine Rouard, Aymé Spor
{"title":"Assessing the efficiency and the side effects of atrazine-degrading biocomposites amended to atrazine-contaminated soil.","authors":"Sakineh Abbasi, Marion Devers-Lamrani, Fabrice Martin-Laurent, Caroline Michel, Sana Romdhane, Nadine Rouard, Aymé Spor","doi":"10.1093/femsec/fiaf071","DOIUrl":"10.1093/femsec/fiaf071","url":null,"abstract":"<p><p>Even decades after being banned in Europe, atrazine and its main metabolites can still be found in soils. While bioaugmentation using pesticide-degrading bacteria is already employed for remediating polluted soils, there is a need to improve its efficiency. Investigating the use of carrier materials to deliver pesticide-degrading microorganisms in situ emerges as a promising approach. Here, we generated atrazine-degrading biocomposites by cultivating either a bacterial strain or a four-species consortium on zeolite as the carrier material. Using a microcosm approach, we evaluated their efficiency to mineralize 14C-atrazine in soil compared to free-living cells, and assessed their side effects on the native soil bacterial community using 16S rRNA metabarcoding. We showed that, right after inoculation, atrazine mineralization potential of the free-living cells was higher than that of the biocomposites. However, microcosms inoculated with the biocomposites displayed significantly higher atrazine mineralization potential after 15 and 45 days of incubation, indicating a higher efficiency but also a better stability in soil. Inoculation of free-living cells and biocomposites differently influenced the diversity and composition of the native microbial community, their impacts being modulated by the atrazine contamination scenario. Altogether, our results provide a thorough evaluation of the efficiency and the ecological impact of atrazine-degrading biocomposites in soil.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats.","authors":"","doi":"10.1093/femsec/fiaf070","DOIUrl":"10.1093/femsec/fiaf070","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 7","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiri Barta, Hana Santruckova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Marketa Stepanova, Jan Curik, Frantisek Veselovsky, Eva Prechova
{"title":"Microbial community dynamics in two Central European peatlands affected by different nitrogen depositions.","authors":"Jiri Barta, Hana Santruckova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Marketa Stepanova, Jan Curik, Frantisek Veselovsky, Eva Prechova","doi":"10.1093/femsec/fiaf056","DOIUrl":"10.1093/femsec/fiaf056","url":null,"abstract":"<p><p>Changes in organic matter accumulation in wetlands are critical for climate dynamics. Different nitrogen (N) inputs in Sphagnum-dominated peat bogs can lead to varying rates of carbon (C) and N accumulation, influencing greenhouse gas emissions. We investigated how contrasting N deposition shapes microbial communities in two Czech peat bogs, focusing on biological N2 fixation (BNF) as a key N input in pristine wetlands. Higher N deposition resulted in a more active microbial community with increased enzyme activity and C acquisition, potentially accelerating decomposition and reducing C storage. Enhanced denitrification, indicated by active nosZ Clade I genes, suggests that higher N inputs may increase N losses through denitrification. In contrast, the lower N site showed a less active microbial community with slower decomposition, beneficial for C sequestration, though potentially less adaptable to future N increases. Experimental BNF rates were 70 times higher at the high N site, consistent with elevated diazotroph activity indicated by active nifH gene. Phosphorus (P) availability and NH4+/NO3- ratios appeared to drive BNF differences, emphasizing the need for managed N inputs to maintain peatland ecological functions.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144247229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Logan M Peoples, J Joseph Giersch, Tyler H Tappenbeck, Joseph W Vanderwall, John M Ranieri, Trista J Vick-Majors, James J Elser, Matthew J Church
{"title":"Microbial communities in glacial lakes of Glacier National Park, MT, USA.","authors":"Logan M Peoples, J Joseph Giersch, Tyler H Tappenbeck, Joseph W Vanderwall, John M Ranieri, Trista J Vick-Majors, James J Elser, Matthew J Church","doi":"10.1093/femsec/fiaf060","DOIUrl":"10.1093/femsec/fiaf060","url":null,"abstract":"<p><p>Glaciers are retreating, altering alpine ecosystems and creating new proglacial lakes. Compared to lakes fed by snowpack, glacial lakes are often enriched in nutrients and suspended solids that decrease light penetration. However, the microorganisms and biogeochemical conditions within these newly formed lakes are not well characterized. We describe the microbial communities in 14 glacial lakes in Glacier National Park, MT, USA using 16S rRNA gene amplicon sequencing and measurements of nutrient concentrations, water clarity, and other environmental properties. Microbial communities were distinct between lakes, including those connected to the same glacier, indicating the importance of site-specific biogeochemical and physical dynamics on these systems. Microbial community composition correlated with lake age (formation before or after the Little Ice Age) and conductivity but not with whether a lake was connected to a contemporaneous glacier > 0.1 km2. Heterotrophic lineages found in other glacial systems were abundant and widespread, while cyanobacteria only reached appreciable abundances in shallow lakes where light reached the benthos. Relative abundances of ammonia and nitrite oxidizers correlated with concentrations of nitrate and nitrite, suggesting nitrification may help control nitrogen forms and concentrations in glacial lakes. We show that as glaciers recede, unique glacial lake microbial communities will be formed and lost with them.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}