Himel Nahreen Khaleque, Homayoun Fathollahzadeh, Anna H Kaksonen, Jorge Valdés, Eva Vergara, David S Holmes, Elizabeth L J Watkin
{"title":"Genomic insights into key mechanisms for carbon, nitrogen, and phosphate assimilation by the acidophilic, halotolerant genus Acidihalobacter members.","authors":"Himel Nahreen Khaleque, Homayoun Fathollahzadeh, Anna H Kaksonen, Jorge Valdés, Eva Vergara, David S Holmes, Elizabeth L J Watkin","doi":"10.1093/femsec/fiae145","DOIUrl":"https://doi.org/10.1093/femsec/fiae145","url":null,"abstract":"<p><p>In-depth comparative genomic analysis was conducted to predict carbon, nitrogen, and phosphate assimilation pathways in the halotolerant, acidophilic genus Acidihalobacter. The study primarily aimed to understand how the metabolic capabilities of each species can determine their roles and effects on the microbial ecology of their unique saline and acidic environments, as well as in their potential application to saline water bioleaching systems. All four genomes encoded the genes for the complete tricarboxylic acid cycle, including 2-oxoglutarate dehydrogenase, a key enzyme absent in obligate chemolithotrophic acidophiles. Genes for a unique carboxysome shell protein, csoS1D, typically found in halotolerant bacteria but not in acidophiles, were identified. All genomes contained lactate and malate utilization genes, but only Ac. ferrooxydans DSM 14175T contained genes for the metabolism of propionate. Genes for phosphate assimilation were present, though organized differently across species. Only Ac. prosperus DSM 5130T and Ac. aeolianus DSM 14174T genomes contained nitrogen fixation genes, while Ac. ferrooxydans DSM 14175T and Ac. yilgarnensis DSM 105917T possessed genes for urease transporters and respiratory nitrate reductases, respectively. The findings suggest that all species can fix carbon dioxide but can also potentially utilize exogenous carbon sources and that the non-nitrogen-fixing species rely on alternative nitrogen assimilation mechanisms.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katharina Pawlowski, Daniel Wibberg, Sara Mehrabi, Nadia Binte Obaid, András Patyi, Fede Berckx, Han Nguyen, Michelle Hagen, Daniel Lundin, Andreas Brachmann, Jochen Blom, Aude Herrera-Belaroussi, Danis Abrouk, Petar Pujic, Ann-Sofi Hahlin, Jörn Kalinowski, Philippe Normand, Anita Sellstedt
{"title":"Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss.","authors":"Katharina Pawlowski, Daniel Wibberg, Sara Mehrabi, Nadia Binte Obaid, András Patyi, Fede Berckx, Han Nguyen, Michelle Hagen, Daniel Lundin, Andreas Brachmann, Jochen Blom, Aude Herrera-Belaroussi, Danis Abrouk, Petar Pujic, Ann-Sofi Hahlin, Jörn Kalinowski, Philippe Normand, Anita Sellstedt","doi":"10.1093/femsec/fiae147","DOIUrl":"https://doi.org/10.1093/femsec/fiae147","url":null,"abstract":"<p><p>Uptake hydrogenase (Hup) recycles H2 formed by nitrogenase during nitrogen fixation, thereby preserving energy. Among root nodule bacteria, most rhizobial strains examined are Hup-, while only one Hup- Frankia inoculum had been identified. Previous analyses had led to the identification of two different [NiFe] hydrogenase syntons. We analysed the distribution of different types of [NiFe] hydrogenase in the genomes of different Frankia species. Our results show that Frankia strains can contain four different [NiFe] hydrogenase syntons representing groups 1f, 1h, 2a and 3b according to Søndergaard et al. (2016); no more than three types were found in any individual genome. The phylogeny of the structural proteins of groups 1f, 1h and 2a follows Frankia phylogeny; the phylogeny of the accessory proteins does not consistently. An analysis of different [NiFe] hydrogenase types in Actinomycetia shows that under the most parsimonious assumption, all four types were present in the ancestral Frankia strain. Based on Hup activities analysed and the losses of syntons in different lineages of genome reduction, we can conclude that groups 1f and 2a are involved in recycling H2 formed by nitrogenase while group 1h and group 3b are not.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenxue Wu, Chih-Hao Hsieh, Ramiro Logares, Jay T Lennon, Hongbin Liu
{"title":"Ecological processes shaping highly connected bacterial communities along strong environmental gradients.","authors":"Wenxue Wu, Chih-Hao Hsieh, Ramiro Logares, Jay T Lennon, Hongbin Liu","doi":"10.1093/femsec/fiae146","DOIUrl":"https://doi.org/10.1093/femsec/fiae146","url":null,"abstract":"<p><p>Along the river-sea continuum, microorganisms are directionally dispersed by water flow while being exposed to strong environmental gradients. To compare the two assembly mechanisms that may strongly and differently influence metacommunity dynamics, namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putatively active (16S rRNA transcript) bacterial communities in the Pearl River-South China Sea Continuum, during the wet (summer) and dry (winter) seasons using high-throughput sequencing. Moreover, well-defined sampling was conducted by including freshwater, oligohaline, mesohaline, polyhaline, and marine habitats. We found that heterogeneous selection exceeded homogenizing dispersal in both the total and active fractions of bacterial communities in two seasons. However, homogeneous selection was prevalent (the dominant except in active bacterial communities during summer), which was primarily due to the bacterial communities' tremendous diversity (associated with high rarity) and our specific sampling design. In either summer or winter seasons, homogeneous and heterogeneous selection showed higher relative importance in total and active communities, respectively, implying that the active bacteria were more responsive to environmental gradients than were the total bacteria. In summary, our findings provide insight into the assembly of bacterial communities in natural ecosystems with high spatial connectivity and environmental heterogeneity.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleix Obiol, Javier Del Campo, Colomban de Vargas, Frédéric Mahé, Ramon Massana
{"title":"How marine are Marine Stramenopiles (MAST)? A cross-system evaluation.","authors":"Aleix Obiol, Javier Del Campo, Colomban de Vargas, Frédéric Mahé, Ramon Massana","doi":"10.1093/femsec/fiae130","DOIUrl":"10.1093/femsec/fiae130","url":null,"abstract":"<p><p>Marine Stramenopiles (MAST) were first described two decades ago through ribosomal RNA gene (rRNA gene) sequences from marine surveys of microbial eukaryotes. MAST comprise several independent lineages at the base of the Stramenopiles. Despite their prevalence in the ocean, the majority of MAST diversity remains uncultured. Previous studies, mainly in marine environments, have explored MAST's cell morphology, distribution, trophic strategies, and genomics using culturing-independent methods. In comparison, less is known about their presence outside marine habitats. Here, we analyse the extensive EukBank dataset to assess the extent to which MAST can be considered marine protists. Additionally, by incorporating newly available rRNA gene sequences, we update Stramenopiles phylogeny, identifying three novel MAST lineages. Our results indicate that MAST are primarily marine with notable exceptions within MAST-2 and MAST-12, where certain subclades are prevalent in freshwater and soil habitats. In the marine water column, only a few MAST species, particularly within clades -1, -3, -4, and -7, dominate and exhibit clear latitudinal distribution patterns. Overall, the massive sequencing dataset analysed in our study confirms and partially expands the previously described diversity of MASTs groups and underscores the predominantly marine nature of most of these uncultured lineages.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phoebe A Chapman, Daniel Hudson, Xochitl C Morgan, Caroline W Beck
{"title":"The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis.","authors":"Phoebe A Chapman, Daniel Hudson, Xochitl C Morgan, Caroline W Beck","doi":"10.1093/femsec/fiae131","DOIUrl":"10.1093/femsec/fiae131","url":null,"abstract":"<p><p>Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Penelope Duval, Edwige Martin, Laurent Vallon, Pierre Antonelli, Maxime Girard, Aymeric Signoret, Patricia Luis, Danis Abrouk, Laure Wiest, Aurélie Fildier, Christelle Bonnefoy, Patrick Jame, Erik Bonjour, Amelie Cantarel, Jonathan Gervaix, Emmanuelle Vulliet, Rémy Cazabet, Guillaume Minard, Claire Valiente Moro
{"title":"Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens.","authors":"Penelope Duval, Edwige Martin, Laurent Vallon, Pierre Antonelli, Maxime Girard, Aymeric Signoret, Patricia Luis, Danis Abrouk, Laure Wiest, Aurélie Fildier, Christelle Bonnefoy, Patrick Jame, Erik Bonjour, Amelie Cantarel, Jonathan Gervaix, Emmanuelle Vulliet, Rémy Cazabet, Guillaume Minard, Claire Valiente Moro","doi":"10.1093/femsec/fiae129","DOIUrl":"10.1093/femsec/fiae129","url":null,"abstract":"<p><p>The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial subsurface lithoautotrophic microbial ecosystems and gas storage in deep subsurface.","authors":"Anthony Ranchou-Peyruse","doi":"10.1093/femsec/fiae142","DOIUrl":"10.1093/femsec/fiae142","url":null,"abstract":"<p><p>Over the next few years, it is planned to convert all or part of the underground gas storage (UGS) facilities used for natural gas (salt caverns, depleted hydrocarbon reservoirs, and deep aquifers) into underground dihydrogen (H2) storage reservoirs. These deep environments host microbial communities, some of which are hydrogenotrophic (sulfate reducers, acetogens, and methanogens). The current state of microbiological knowledge is thus presented for the three types of UGS facilities. In the mid-1990s, the concept of anaerobic subsurface lithoautotrophic microbial ecosystems, or SLiMEs, emerged. It is expected that the large-scale injection of H2 into subsurface environments will generate new microbial ecosystems called artificial SLiMEs, which could persist over time. These artificial SLiMEs could lead to H2 loss, an intense methanogenic activity, a degradation of gas quality and a risk to installations through sulfide production. However, recent studies on salt caverns and deep aquifers suggest that hydrogenotrophic microbial activity also leads to alkalinization (up to pH 10), which can constrain hydrogenotrophy. Therefore, studying and understanding these artificial SLiMEs is both a necessity for the development of the H2 industry and presents an opportunity for ecologists to monitor the evolution of deep environments in real time.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anton Hartmann, Luz de Bashan, Birgit Wassermann, Marcus A Horn, Angela Sessitsch
{"title":"FEMSEC-thematic issue \"Rhizosphere-a One Health concept\".","authors":"Anton Hartmann, Luz de Bashan, Birgit Wassermann, Marcus A Horn, Angela Sessitsch","doi":"10.1093/femsec/fiae136","DOIUrl":"10.1093/femsec/fiae136","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mélanie Delleuze, Guillaume Schwob, Julieta Orlando, Karin Gerard, Thomas Saucède, Paul Brickle, Elie Poulin, Léa Cabrol
{"title":"Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean.","authors":"Mélanie Delleuze, Guillaume Schwob, Julieta Orlando, Karin Gerard, Thomas Saucède, Paul Brickle, Elie Poulin, Léa Cabrol","doi":"10.1093/femsec/fiae134","DOIUrl":"10.1093/femsec/fiae134","url":null,"abstract":"<p><p>Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Retter, Christian Griebler, R Henrik Nilsson, Johannes Haas, Steffen Birk, Eva Breyer, Federico Baltar, Clemens Karwautz
{"title":"Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient.","authors":"Alice Retter, Christian Griebler, R Henrik Nilsson, Johannes Haas, Steffen Birk, Eva Breyer, Federico Baltar, Clemens Karwautz","doi":"10.1093/femsec/fiae139","DOIUrl":"10.1093/femsec/fiae139","url":null,"abstract":"<p><p>Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}