Logan M Peoples, J Joseph Giersch, Tyler H Tappenbeck, Joseph W Vanderwall, John M Ranieri, Trista J Vick-Majors, James J Elser, Matthew J Church
{"title":"Microbial communities in glacial lakes of Glacier National Park, MT, USA.","authors":"Logan M Peoples, J Joseph Giersch, Tyler H Tappenbeck, Joseph W Vanderwall, John M Ranieri, Trista J Vick-Majors, James J Elser, Matthew J Church","doi":"10.1093/femsec/fiaf060","DOIUrl":null,"url":null,"abstract":"<p><p>Glaciers are retreating, altering alpine ecosystems and creating new proglacial lakes. Compared to lakes fed by snowpack, glacial lakes are often enriched in nutrients and suspended solids that decrease light penetration. However, the microorganisms and biogeochemical conditions within these newly formed lakes are not well characterized. We describe the microbial communities in 14 glacial lakes in Glacier National Park, MT, USA using 16S rRNA gene amplicon sequencing and measurements of nutrient concentrations, water clarity, and other environmental properties. Microbial communities were distinct between lakes, including those connected to the same glacier, indicating the importance of site-specific biogeochemical and physical dynamics on these systems. Microbial community composition correlated with lake age (formation before or after the Little Ice Age) and conductivity but not with whether a lake was connected to a contemporaneous glacier > 0.1 km2. Heterotrophic lineages found in other glacial systems were abundant and widespread, while cyanobacteria only reached appreciable abundances in shallow lakes where light reached the benthos. Relative abundances of ammonia and nitrite oxidizers correlated with concentrations of nitrate and nitrite, suggesting nitrification may help control nitrogen forms and concentrations in glacial lakes. We show that as glaciers recede, unique glacial lake microbial communities are lost with them.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glaciers are retreating, altering alpine ecosystems and creating new proglacial lakes. Compared to lakes fed by snowpack, glacial lakes are often enriched in nutrients and suspended solids that decrease light penetration. However, the microorganisms and biogeochemical conditions within these newly formed lakes are not well characterized. We describe the microbial communities in 14 glacial lakes in Glacier National Park, MT, USA using 16S rRNA gene amplicon sequencing and measurements of nutrient concentrations, water clarity, and other environmental properties. Microbial communities were distinct between lakes, including those connected to the same glacier, indicating the importance of site-specific biogeochemical and physical dynamics on these systems. Microbial community composition correlated with lake age (formation before or after the Little Ice Age) and conductivity but not with whether a lake was connected to a contemporaneous glacier > 0.1 km2. Heterotrophic lineages found in other glacial systems were abundant and widespread, while cyanobacteria only reached appreciable abundances in shallow lakes where light reached the benthos. Relative abundances of ammonia and nitrite oxidizers correlated with concentrations of nitrate and nitrite, suggesting nitrification may help control nitrogen forms and concentrations in glacial lakes. We show that as glaciers recede, unique glacial lake microbial communities are lost with them.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms