S Emil Ruff, Laura Schwab, Emeline Vidal, Jordon D Hemingway, Beate Kraft, Ranjani Murali
{"title":"Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and oxygen-producing metabolic pathways in apparently anoxic environments.","authors":"S Emil Ruff, Laura Schwab, Emeline Vidal, Jordon D Hemingway, Beate Kraft, Ranjani Murali","doi":"10.1093/femsec/fiae132","DOIUrl":"10.1093/femsec/fiae132","url":null,"abstract":"<p><p>Nearly all molecular oxygen (O2) on Earth is produced via oxygenic photosynthesis by plants or photosynthetically active microorganisms. Light-independent O2 production, which occurs both abiotically, e.g. through water radiolysis, or biotically, e.g. through the dismutation of nitric oxide or chlorite, has been thought to be negligible to the Earth system. However, recent work indicates that O2 is produced and consumed in dark and apparently anoxic environments at a much larger scale than assumed. Studies have shown that isotopically light O2 can accumulate in old groundwaters, that strictly aerobic microorganisms are present in many apparently anoxic habitats, and that microbes and metabolisms that can produce O2 without light are widespread and abundant in diverse ecosystems. Analysis of published metagenomic data reveals that the enzyme putatively capable of nitric oxide dismutation forms four major phylogenetic clusters and occurs in at least 16 bacterial phyla, most notably the Bacteroidota. Similarly, a re-analysis of published isotopic signatures of dissolved O2 in groundwater suggests in situ production in up to half of the studied environments. Geochemical and microbiological data support the conclusion that \"dark oxygen production\" is an important and widespread yet overlooked process in apparently anoxic environments with far-reaching implications for subsurface biogeochemistry and ecology.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carmen Hoffbeck, Danielle R M L Middleton, Susan N Keall, Chye-Mei Huang, An Pas, Kate Irving, Nicola J Nelson, Michael W Taylor
{"title":"Limited gut bacterial response of tuatara (Sphenodon punctatus) to dietary manipulation and captivity.","authors":"Carmen Hoffbeck, Danielle R M L Middleton, Susan N Keall, Chye-Mei Huang, An Pas, Kate Irving, Nicola J Nelson, Michael W Taylor","doi":"10.1093/femsec/fiae141","DOIUrl":"10.1093/femsec/fiae141","url":null,"abstract":"<p><p>The bacteria of a host's digestive tract play crucial roles in digestion and pathogen resistance. Hosts living in captivity often have more human interaction and antibiotic use, in addition to differences in diet and environment, compared to their wild counterparts. Consequently, wild and captive animals frequently harbour different bacterial communities. We tested whether diversity of diet provided in captivity shifts the gut bacteria of tuatara, an endemic New Zealand reptile, at three captive sites, and examined how the gut community of these tuatara compares to those in the wild. Dietary manipulation did not cause a strong overall shift in tuatara gut bacteria, but individual tuatara did experience bacterial shifts during manipulation, which subsequently reverted after manipulation. We found that Bacteroides, a genus common in most vertebrate guts but rare in tuatara, increased significantly in the gut during manipulation, then decreased post-manipulation. Finally, the gut bacteria of captive tuatara significantly differed from those of wild tuatara, though most of the dominant bacterial genera found in wild tuatara persisted in captive tuatara. This work represents a first investigation of the captive tuatara bacterial community and establishes the sensitivity of the gut community to dietary manipulation and captivity for this relict reptile.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sára Šardzíková, Marta Gajewska, Norbert Gałka, Matúš Štefánek, Andrej Baláž, Martina Garaiová, Roman Holič, Wiesław Świderek, Katarína Šoltys
{"title":"Can longer lifespan be associated with gut microbiota involvement in lipid metabolism?","authors":"Sára Šardzíková, Marta Gajewska, Norbert Gałka, Matúš Štefánek, Andrej Baláž, Martina Garaiová, Roman Holič, Wiesław Świderek, Katarína Šoltys","doi":"10.1093/femsec/fiae135","DOIUrl":"10.1093/femsec/fiae135","url":null,"abstract":"<p><p>Biological aging is linked to altered body composition and reduced neuroactive steroid hormones like dehydroepiandrosterone sulfate (DHEAS), which can stimulate the GABA signaling pathway via gut microbiota. Our study examined the association of gut microbiota with lifespan in mice through comprehensive analysis of its composition and functional involvement in cholesterol sulfate, a precursor of DHEAS, metabolism. We used 16S rRNA and metagenomic sequencing, followed by metabolic pathway prediction and thin layer chromatography and MALDI-TOF cholesterol sulfate identification. Significant increases in bacteria such as Bacteroides, typical for long-lived and Odoribacter and Colidextribacter, specific for short-lived mice were detected. Furthermore, for males (Rikenella and Alloprevotella) and females (Lactobacillus and Bacteroides), specific bacterial groups emerged as predictors (AUC = 1), highlighting sex-specific patterns. Long-lived mice showed a strong correlation of Bacteroides (0.918) with lipid and steroid hormone metabolism, while a negative correlation of GABAergic synapse with body weight (-0.589). We found that several Bacteroides species harboring the sulfotransferase gene and gene cluster for sulfonate donor synthesis are involved in converting cholesterol to cholesterol sulfate, significantly higher in the feces of long-lived individuals. Overall, we suggest that increased involvement of gut bacteria, mainly Bacteroides spp., in cholesterol sulfate synthesis could ameliorate aging through lipid metabolism.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virginie Lemieux-Labonté, Jananan S Pathmanathan, Yves Terrat, Nicolas Tromas, Anouk Simard, Catherine G Haase, Cori L Lausen, Craig K R Willis, François-Joseph Lapointe
{"title":"Pseudogymnoascus destructans invasion stage impacts the skin microbial functions of highly vulnerable Myotis lucifugus.","authors":"Virginie Lemieux-Labonté, Jananan S Pathmanathan, Yves Terrat, Nicolas Tromas, Anouk Simard, Catherine G Haase, Cori L Lausen, Craig K R Willis, François-Joseph Lapointe","doi":"10.1093/femsec/fiae138","DOIUrl":"10.1093/femsec/fiae138","url":null,"abstract":"<p><p>The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic, and established). Our results support three new hypotheses about Pd and skin functional microbiome: (1) there is an important effect of Pd invasion stage, especially at the epidemic stage; (2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; (3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger sample sizes and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Taxonomic and functional partitioning of Chloroflexota populations under ferruginous conditions at and below the sediment-water interface.","authors":"Aurèle Vuillemin, Fatima Ruiz-Blas, Sizhong Yang, Alexander Bartholomäus, Cynthia Henny, Jens Kallmeyer","doi":"10.1093/femsec/fiae140","DOIUrl":"https://doi.org/10.1093/femsec/fiae140","url":null,"abstract":"<p><p>The adaption of the phylum Chloroflexota to various geochemical conditions is thought to have originated in primitive microbial ecosystems, involving hydrogenotrophic energy conservation under ferruginous anoxia. Oligotrophic deep waters displaying anoxic ferruginous conditions, such as those of Lake Towuti, and their sediments may thus constitute a preferential ecological niche for investigating metabolic versatility in modern Chloroflexota. Combining pore water geochemistry, cell counts, sulfate reduction rates, 16S rRNA genes with in-depth analysis of metagenome-assembled genomes, we show that Chloroflexota benefit from cross-feeding on metabolites derived from canonical respiration chains and fermentation. Detailing their genetic contents, we provide molecular evidence that Anaerolineae have metabolic potential to use unconventional electron acceptors, different cytochromes and multiple redox metalloproteins to cope with oxygen fluctuations, and thereby effectively colonizing the ferruginous sediment-water interface. In sediments, Dehalococcoidia evolved to be acetogens, scavenging fatty acids, haloacids and aromatic acids, apparently bypassing specific steps in carbon assimilation pathways to perform energy-conserving secondary fermentations combined with CO2 fixation via the Wood-Ljungdahl pathway. Our study highlights the partitioning of Chloroflexota populations according to alternative electron acceptors and donors available at the sediment-water interface and below. Chloroflexota would have developed analogous primeval features due to oxygen fluctuations in ancient ferruginous ecosystems.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laurene Leclerc, John Mattick, Brendan P Burns, Davide Sassera, Julie Dunning Hottop, Nathan Lo
{"title":"Metatranscriptomics provide insights into the role of the symbiont midichloria mitochondrii in Ixodes ticks.","authors":"Laurene Leclerc, John Mattick, Brendan P Burns, Davide Sassera, Julie Dunning Hottop, Nathan Lo","doi":"10.1093/femsec/fiae133","DOIUrl":"10.1093/femsec/fiae133","url":null,"abstract":"<p><p>Ticks are important vectors of bacterial, viral and protozoan pathogens of humans and animals worldwide. Candidatus Midichloria mitochondrii (hereafter M. mitochondrii) is a highly abundant bacterial endosymbiont found in many tick species, including two medically important ticks respectively found in Europe and Australia, Ixodes ricinus and Ixodes holocyclus. The present study aimed to determine the symbiont's biological role by identifying lateral gene transfer (LGT) events, characterising the transcriptome, and performing differential expression analyses. Metatranscriptomic data revealed that M. mitochondrii species in I. ricinus and I. holocyclus were equipped with the metabolic potential and were actively transcribing the genes for several important roles including heme, biotin and folate synthesis, oxidative stress response, osmotic regulation, and ATP production in microaerobic conditions. Differential expression analyses additionally showed an upregulation in stringent response and DNA repair genes in M. mitochondrii of I. holocyclus nymphs compared to adults. Low rates of differential expression suggest the symbiont may lack global gene regulation, as observed in other endosymbionts. Moreover, the identification of an LGT event and the proposed specialisation of the M. mitochondrii strains, mIxholo1 and mIxholo2, for different I. holocyclus life stages highlight the complex interactions between M. mitochondrii and their tick hosts.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Lori, Dominika Kundel, Paul Mäder, Akanksha Singh, Dharmendra Patel, Bhupendra Singh Sisodia, Amritbir Riar, Hans-Martin Krause
{"title":"Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol","authors":"Martina Lori, Dominika Kundel, Paul Mäder, Akanksha Singh, Dharmendra Patel, Bhupendra Singh Sisodia, Amritbir Riar, Hans-Martin Krause","doi":"10.1093/femsec/fiae127","DOIUrl":"https://doi.org/10.1093/femsec/fiae127","url":null,"abstract":"The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation, and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trine Bertram Rasmussen, Stephen E Noell, Craig W Herbold, Ian A Dickie, Roanna Richards-Babbage, Matthew B Stott, S Craig Cary, Ian R McDonald
{"title":"Geothermal ecosystems on Mt. Erebus, Antarctica, support diverse and taxonomically novel biota","authors":"Trine Bertram Rasmussen, Stephen E Noell, Craig W Herbold, Ian A Dickie, Roanna Richards-Babbage, Matthew B Stott, S Craig Cary, Ian R McDonald","doi":"10.1093/femsec/fiae128","DOIUrl":"https://doi.org/10.1093/femsec/fiae128","url":null,"abstract":"Mt. Erebus, Antarctica, is the southernmost active volcano in the world and harbors diverse geothermally unique ecosystems, including ‘Subglacial’ and ‘Exposed’ features, surrounded by a vast desert of ice and snow. Previous studies, while limited in scope, have highlighted the unique and potentially endemic biota of Mt. Erebus. Here, we provide an amplicon-based biodiversity study across all domains of life and all types of geothermal features, with physicochemical and biological data from 48 samples (39 Exposed and 9 Subglacial) collected through various field seasons. We found potentially high taxonomic novelty among prokaryotes and fungi, supporting past hypotheses of high endemism due to the distinctive and isolated environment; in particular, the large number of taxonomically divergent fungal sequences was surprising. We found that different site types had unique physicochemistry and biota; Exposed sites were warmer than Subglacial (median: 40 vs 10°C for Exposed and Subglacial, respectively) and tended to have more photosynthetic organisms (Cyanobacteria and Chlorophyta). Subglacial sites had more Actinobacteriota, correlated with greater concentrations of Ca and Mg present. Our results also suggest potential human impacts on these remote, highly significant sites, finding evidence for fungal taxa normally associated with wood decay. In this study, we provide a blueprint for future work aimed at better understanding the novel biota of Mt. Erebus.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lois S Taylor, Allison R Mason, Hannah L Noel, Michael E Essington, Mary C Davis, Veronica A Brown, Dawnie W Steadman, Jennifer M DeBruyn
{"title":"Transient hypoxia drives soil microbial community dynamics and biogeochemistry during human decomposition","authors":"Lois S Taylor, Allison R Mason, Hannah L Noel, Michael E Essington, Mary C Davis, Veronica A Brown, Dawnie W Steadman, Jennifer M DeBruyn","doi":"10.1093/femsec/fiae119","DOIUrl":"https://doi.org/10.1093/femsec/fiae119","url":null,"abstract":"Human decomposition in terrestrial ecosystems is a dynamic process creating localized hot spots of soil microbial activity. Longer-term (beyond a few months) impacts on decomposer microbial communities are poorly characterized and do not typically connect microbial communities to biogeochemistry, limiting our understanding of decomposer communities and their functions. We performed separate year-long human decomposition trials, one starting in spring, another in winter, integrating bacterial and fungal community structure and abundances with soil physicochemistry and biogeochemistry to identify key drivers of microbial community change. In both trials soil acidification, elevated microbial respiration, and reduced soil oxygen concentrations occurred. Changes in soil oxygen concentrations were the primary driver of microbial succession and nitrogen transformation patterns, while fungal community diversity and abundance was related to soil pH. Relative abundance of facultative anaerobic taxa (Firmicutes and Saccharomycetes) increased during the period of reduced soil oxygen. The magnitude and timing of the decomposition responses was amplified during the spring trial relative to the winter, even when corrected for thermal inputs (accumulated degree days). Further, soil chemical parameters, microbial community structure, and fungal gene abundances remained altered at the end of one year, suggesting longer-term impacts on soil ecosystems beyond the initial pulse of decomposition products.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Freixa, Juan David González-Trujillo, Oriol Sacristán-Soriano, Carles M Borrego, Sergi Sabater
{"title":"Terrestrialization of sediment bacterial assemblages when temporary rivers run dry","authors":"Anna Freixa, Juan David González-Trujillo, Oriol Sacristán-Soriano, Carles M Borrego, Sergi Sabater","doi":"10.1093/femsec/fiae126","DOIUrl":"https://doi.org/10.1093/femsec/fiae126","url":null,"abstract":"Bacterial communities in river sediments are shaped by a trade-off between dispersal from upstream or nearby land and selection by the local environmental conditions. In temporary rivers (i.e., those characterized by long drying periods and subsequent rewetting) seasonal hydrological dynamics shape bacterial communities by connecting or disconnecting different river habitats. In this study, we tracked and compared the temporal and spatial changes in the composition of bacterial communities in streambed sediments and floodplain habitats across both permanent and intermittent river segments. Our findings revealed that environmental selection played a key role in assembling bacterial communities in both segments. We argue that distinct environmental features act as filters at the local scale, favoring specific bacterial taxa in isolated pools and promoting some typically terrestrial taxa in dry areas. Considering the prospective extension of drying intervals due to climate change, our results suggest an emerging trend wherein bacterial assemblages in temporary streams progressively incorporate microorganisms of terrestrial origin, well-adapted to tolerate desiccation phases. This phenomenon may constitute an integral facet of the broader adaptive dynamics of temporary river ecosystems in response to the impacts of climate change.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}