The quest for molecular markers indicating root growth in microbially treated tomato (Solanum lycopersicum) plants.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Leonard S van Overbeek, Stefan Aanstoot, Erik Esveld, Lina Russ, Beatriz Andreo Jimenez
{"title":"The quest for molecular markers indicating root growth in microbially treated tomato (Solanum lycopersicum) plants.","authors":"Leonard S van Overbeek, Stefan Aanstoot, Erik Esveld, Lina Russ, Beatriz Andreo Jimenez","doi":"10.1093/femsec/fiaf063","DOIUrl":null,"url":null,"abstract":"<p><p>Roots are essential plant organs for anchorage in soil, uptake of water with nutrients, storage of photosynthates, and microbial interactions. More knowledge on microorganisms stimulating root growth is needed to control root development of cultured plants. A marker-assisted approach would facilitate vast screenings of microbes for eventual effects on root development. It was aimed to select for transcripts that report on root growth stimulation at the early tomato plant growth stage upon microbial treatments. Microbially treated tomato (Solanum lycopersicum) plants were cultivated in stone wool slabs and screened for genes that increased or decreased in differential expression upon increased root growth, by RNAseq. Expression of 21 selected genes was measured by quantitative polymerase chain reaction (qPCR) in relation with stimulated root growth, recorded by X-ray microtomography, of microbially treated tomato plants cultivated in stone wool blocks. Two genes were identified of which expression significantly correlated with high measured root length, and for one also with high measured shoot wet and dry weight. The translated products, both involved in modulation of Rubisco activity, were a chloroplast-localized acetyltransferase (SlSNAT2) and a Rubisco activase (Rca). Transcripts whose translated products modulate Rubisco activity can serve as candidates for reporting on early root development upon microbial inoculation.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Roots are essential plant organs for anchorage in soil, uptake of water with nutrients, storage of photosynthates, and microbial interactions. More knowledge on microorganisms stimulating root growth is needed to control root development of cultured plants. A marker-assisted approach would facilitate vast screenings of microbes for eventual effects on root development. It was aimed to select for transcripts that report on root growth stimulation at the early tomato plant growth stage upon microbial treatments. Microbially treated tomato (Solanum lycopersicum) plants were cultivated in stone wool slabs and screened for genes that increased or decreased in differential expression upon increased root growth, by RNAseq. Expression of 21 selected genes was measured by quantitative polymerase chain reaction (qPCR) in relation with stimulated root growth, recorded by X-ray microtomography, of microbially treated tomato plants cultivated in stone wool blocks. Two genes were identified of which expression significantly correlated with high measured root length, and for one also with high measured shoot wet and dry weight. The translated products, both involved in modulation of Rubisco activity, were a chloroplast-localized acetyltransferase (SlSNAT2) and a Rubisco activase (Rca). Transcripts whose translated products modulate Rubisco activity can serve as candidates for reporting on early root development upon microbial inoculation.

微生物处理番茄根系生长分子标记的探索。
根是植物在土壤中固定、吸收水分和养分、储存光合产物和微生物相互作用的重要器官。为了控制培养植物的根系发育,需要对微生物促进根系生长有更多的了解。一种标记辅助的方法将有助于大量筛选微生物,以确定对根系发育的最终影响。目的是选择报道微生物处理对番茄植株生长早期根系生长刺激的转录本。将经微生物处理的番茄(Solanum lycopersicum)植株种植在石棉板上,通过RNAseq筛选随着根系生长增加而增加或减少差异表达的基因。采用定量聚合酶链式反应(qPCR)测定了21个选定基因的表达,并通过x射线显微断层扫描记录了在石棉块中培养的微生物处理过的番茄植株与刺激根系生长的关系。鉴定出两个基因的表达与高测量根长显著相关,一个基因的表达也与高测量茎干、湿重显著相关。翻译产物都参与Rubisco活性的调节,分别是叶绿体定位的乙酰转移酶(SlSNAT2)和Rubisco激活酶(Rca)。其翻译产物调节Rubisco活性的转录本可以作为微生物接种后早期根发育的候选报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信