Carol de Ram, Maryse D Berkhout, Carolina O Pandeirada, Jean-Paul Vincken, Guido J E J Hooiveld, Clara Belzer, Henk A Schols
{"title":"Distinct in vitro utilization and degradation of porcine gastric mucin glycans by human intestinal bacteria.","authors":"Carol de Ram, Maryse D Berkhout, Carolina O Pandeirada, Jean-Paul Vincken, Guido J E J Hooiveld, Clara Belzer, Henk A Schols","doi":"10.1093/femsec/fiaf066","DOIUrl":null,"url":null,"abstract":"<p><p>Mucin glycan degradation and utilization by microbes colonizing the human intestine is an essential host-microbe interaction. In this study, degradation and utilization of porcine gastric mucin glycans by Akkermansia muciniphila, Ruminococcus torques, Bacteroides thetaiotaomicron, co-cultures, and a synthetic bacterial community were investigated over time. Liquid chromatography-tandem mass spectrometry O-glycan patterns revealed that all three monocultures removed sialic acid residues. Furthermore, R. torques first targeted fucosylated O-glycans, while A. muciniphila and B. thetaiotaomicron equally favoured fucosylated and non-fucosylated O-glycans. A. muciniphila, R. torques, and B. thetaiotaomicron favoured degradation of first core 2 O-glycan structures relative to core 1 O-glycan structures. Co-cultures, compared to monocultures, demonstrated different O-glycan degradation patterns suggesting distinct ecological interactions between the bacteria. Although extensive O-glycan degradation was observed by the monocultures and co-cultures, only the synthetic community completely degraded all O-glycans within 24 h. Regarding degradation of the constituent N-glycans, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry showed that A. muciniphila and R. torques can partly degrade N-glycans, B. thetaiotaomicron can completely degrade high-mannose N-glycans, and the synthetic community can degrade all N-glycans. The utilization of mucin glycans was observed by production of different metabolites among the bacteria. These results indicate that degradation of mucin glycans depends on microbial interactions and ecological networks.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf066","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mucin glycan degradation and utilization by microbes colonizing the human intestine is an essential host-microbe interaction. In this study, degradation and utilization of porcine gastric mucin glycans by Akkermansia muciniphila, Ruminococcus torques, Bacteroides thetaiotaomicron, co-cultures, and a synthetic bacterial community were investigated over time. Liquid chromatography-tandem mass spectrometry O-glycan patterns revealed that all three monocultures removed sialic acid residues. Furthermore, R. torques first targeted fucosylated O-glycans, while A. muciniphila and B. thetaiotaomicron equally favoured fucosylated and non-fucosylated O-glycans. A. muciniphila, R. torques, and B. thetaiotaomicron favoured degradation of first core 2 O-glycan structures relative to core 1 O-glycan structures. Co-cultures, compared to monocultures, demonstrated different O-glycan degradation patterns suggesting distinct ecological interactions between the bacteria. Although extensive O-glycan degradation was observed by the monocultures and co-cultures, only the synthetic community completely degraded all O-glycans within 24 h. Regarding degradation of the constituent N-glycans, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry showed that A. muciniphila and R. torques can partly degrade N-glycans, B. thetaiotaomicron can completely degrade high-mannose N-glycans, and the synthetic community can degrade all N-glycans. The utilization of mucin glycans was observed by production of different metabolites among the bacteria. These results indicate that degradation of mucin glycans depends on microbial interactions and ecological networks.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms