{"title":"解读人类肠道微生物和粪便微生物群的氧化应激反应:一种基于培养的方法。","authors":"Janina N Zünd, Marina Caflisch, Denisa Mujezinovic, Serafina Plüss, Christophe Lacroix, Benoit Pugin","doi":"10.1093/femsec/fiaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammation creates an oxidative environment, altering the gut microbiota. However, the mechanisms underlying oxidative stress-induced community changes remain poorly understood, owing to the complexity of the host environment, high inter-individual variability, and a lack of comparative data on stress tolerance across intestinal taxa. To address this, we developed an in vitro cultivation approach to assess the effects of oxidative stress, induced by 12 concentrations each of hydrogen peroxide (H₂O₂) and oxygen (O₂), on 41 intestinal strains and seven adults' fecal microbiota. Fusicatenibacter saccharivorans and Lachnospira eligens emerged as particularly sensitive taxa in both pure cultures and complex communities. Oxidative stress also reduced butyrate-producing taxa, like Agathobacter and Anaerostipes, along with total butyrate levels. In contrast, facultative anaerobes, like Escherichia-Shigella and Enterococcus, were largely unaffected, and Bacteroides showed high resilience. Notably, the impact of oxidative stress varied among individuals, with numerous genera showing taxon-specific changes depending on the host microbiota composition. These findings underscore the importance of considering individual microbiota backgrounds when assessing oxidative stress effects on microbial communities. Our study provides a tolerance profile of gut microbes to oxidative stress, reveals overlooked taxa involved in community restructuring, and introduces a screening tool to characterize individual microbial and metabolic responses.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering oxidative stress responses in human gut microbes and fecal microbiota: a cultivation-based approach.\",\"authors\":\"Janina N Zünd, Marina Caflisch, Denisa Mujezinovic, Serafina Plüss, Christophe Lacroix, Benoit Pugin\",\"doi\":\"10.1093/femsec/fiaf054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic inflammation creates an oxidative environment, altering the gut microbiota. However, the mechanisms underlying oxidative stress-induced community changes remain poorly understood, owing to the complexity of the host environment, high inter-individual variability, and a lack of comparative data on stress tolerance across intestinal taxa. To address this, we developed an in vitro cultivation approach to assess the effects of oxidative stress, induced by 12 concentrations each of hydrogen peroxide (H₂O₂) and oxygen (O₂), on 41 intestinal strains and seven adults' fecal microbiota. Fusicatenibacter saccharivorans and Lachnospira eligens emerged as particularly sensitive taxa in both pure cultures and complex communities. Oxidative stress also reduced butyrate-producing taxa, like Agathobacter and Anaerostipes, along with total butyrate levels. In contrast, facultative anaerobes, like Escherichia-Shigella and Enterococcus, were largely unaffected, and Bacteroides showed high resilience. Notably, the impact of oxidative stress varied among individuals, with numerous genera showing taxon-specific changes depending on the host microbiota composition. These findings underscore the importance of considering individual microbiota backgrounds when assessing oxidative stress effects on microbial communities. Our study provides a tolerance profile of gut microbes to oxidative stress, reveals overlooked taxa involved in community restructuring, and introduces a screening tool to characterize individual microbial and metabolic responses.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf054\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Deciphering oxidative stress responses in human gut microbes and fecal microbiota: a cultivation-based approach.
Chronic inflammation creates an oxidative environment, altering the gut microbiota. However, the mechanisms underlying oxidative stress-induced community changes remain poorly understood, owing to the complexity of the host environment, high inter-individual variability, and a lack of comparative data on stress tolerance across intestinal taxa. To address this, we developed an in vitro cultivation approach to assess the effects of oxidative stress, induced by 12 concentrations each of hydrogen peroxide (H₂O₂) and oxygen (O₂), on 41 intestinal strains and seven adults' fecal microbiota. Fusicatenibacter saccharivorans and Lachnospira eligens emerged as particularly sensitive taxa in both pure cultures and complex communities. Oxidative stress also reduced butyrate-producing taxa, like Agathobacter and Anaerostipes, along with total butyrate levels. In contrast, facultative anaerobes, like Escherichia-Shigella and Enterococcus, were largely unaffected, and Bacteroides showed high resilience. Notably, the impact of oxidative stress varied among individuals, with numerous genera showing taxon-specific changes depending on the host microbiota composition. These findings underscore the importance of considering individual microbiota backgrounds when assessing oxidative stress effects on microbial communities. Our study provides a tolerance profile of gut microbes to oxidative stress, reveals overlooked taxa involved in community restructuring, and introduces a screening tool to characterize individual microbial and metabolic responses.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms