Microbial Community Dynamics in Two Central European Peatlands Affected by Different Nitrogen Depositions.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Jiri Barta, Hana Santruckova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Marketa Stepanova, Jan Curik, Frantisek Veselovsky, Eva Prechova
{"title":"Microbial Community Dynamics in Two Central European Peatlands Affected by Different Nitrogen Depositions.","authors":"Jiri Barta, Hana Santruckova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Marketa Stepanova, Jan Curik, Frantisek Veselovsky, Eva Prechova","doi":"10.1093/femsec/fiaf056","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in organic matter accumulation in wetlands are critical for climate dynamics. Different nitrogen (N) inputs in Sphagnum-dominated peat bogs can lead to varying rates of carbon (C) and N accumulation, influencing greenhouse gas emissions. We investigated how contrasting N deposition shapes microbial communities in two Czech peat bogs, focusing on biological N2 fixation (BNF) as a key N input in pristine wetlands. Higher N deposition resulted in a more active microbial community with increased enzyme activity and C acquisition, potentially accelerating decomposition and reducing C storage. Enhanced denitrification, indicated by active nosZ Clade I genes, suggests that higher N inputs may increase N losses through denitrification. In contrast, the lower N site showed a less active microbial community with slower decomposition, beneficial for C sequestration, though potentially less adaptable to future N increases. Experimental BNF rates were 70 times higher at the high N site, consistent with elevated diazotroph activity indicated by active nifH gene. Phosphorus (P) availability and NH4+/NO3- ratios appeared to drive BNF differences, emphasizing the need for managed N inputs to maintain peatland ecological functions.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in organic matter accumulation in wetlands are critical for climate dynamics. Different nitrogen (N) inputs in Sphagnum-dominated peat bogs can lead to varying rates of carbon (C) and N accumulation, influencing greenhouse gas emissions. We investigated how contrasting N deposition shapes microbial communities in two Czech peat bogs, focusing on biological N2 fixation (BNF) as a key N input in pristine wetlands. Higher N deposition resulted in a more active microbial community with increased enzyme activity and C acquisition, potentially accelerating decomposition and reducing C storage. Enhanced denitrification, indicated by active nosZ Clade I genes, suggests that higher N inputs may increase N losses through denitrification. In contrast, the lower N site showed a less active microbial community with slower decomposition, beneficial for C sequestration, though potentially less adaptable to future N increases. Experimental BNF rates were 70 times higher at the high N site, consistent with elevated diazotroph activity indicated by active nifH gene. Phosphorus (P) availability and NH4+/NO3- ratios appeared to drive BNF differences, emphasizing the need for managed N inputs to maintain peatland ecological functions.

不同氮沉降对中欧两个泥炭地微生物群落动态的影响
湿地有机质积累的变化对气候动力学至关重要。在以泥炭为主的泥炭沼泽中,不同的氮(N)输入会导致不同的碳(C)和氮积累速率,从而影响温室气体排放。我们研究了两个捷克泥炭沼泽中不同的氮沉降如何影响微生物群落,重点研究了原始湿地中作为关键氮输入的生物固氮(BNF)。较高的N沉降导致微生物群落更活跃,酶活性和C获取增加,可能加速分解和减少C储存。活跃的nosZ Clade I基因表明,反硝化作用增强,表明高N输入可能增加反硝化过程中的N损失。相比之下,低氮位点的微生物群落活性较低,分解速度较慢,有利于碳的固存,但对未来氮含量增加的适应能力可能较弱。实验BNF率在高氮位点高出70倍,与活性nifH基因显示的重氮营养活性升高一致。磷(P)有效性和NH4+/NO3-比值似乎驱动了BNF差异,强调了管理氮输入以维持泥炭地生态功能的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信