Hong Yan, Endong Wang, Guo-Shu Wei, Xuenong Xu, Mark R H Hurst, Bo Zhang
{"title":"Microbial dynamics across tri-trophic systems: insights from plant-herbivore-predator interactions.","authors":"Hong Yan, Endong Wang, Guo-Shu Wei, Xuenong Xu, Mark R H Hurst, Bo Zhang","doi":"10.1093/femsec/fiaf065","DOIUrl":null,"url":null,"abstract":"<p><p>Microbes play a critical role in regulating tri-trophic interactions among plants, herbivores, and their natural enemies, influencing key ecological and evolutionary processes. To fully understand these interactions through the food chain, a well-defined tri-trophic system is required. We investigated microbial dynamics involving plants (beans, cucumbers, and eggplants), spider mites (Tetranychus urticae), and predatory mites (Phytoseiulus persimilis) through 16S rRNA gene sequencing. The results revealed significant variations in microbiota across different trophic levels. Source tracking analysis indicated that microbiota at each trophic level were rarely inherited from the previous one, and deterministic processes played a key role in shaping the endosphere communities of these levels. Most shared zero-radius operational taxonomic units across each trophic level belonged to Pseudomonas, Bacillus, and Staphylococcus. Leaf microbiota differed among plants, while spider mites harbored similar microbiota. Notably, the microbiota of predatory mites on eggplants differed significantly from those on the other two plants. Biomarker selection and correlation analyses revealed that the abundance of Methylobacterium and Stenotrophomonas was strongly correlated with the improved fitness of predatory mites across different plants. Our study highlights the complex and dynamic nature of microbial communities across different trophic levels in a well-defined plant-herbivore-predator system.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf065","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbes play a critical role in regulating tri-trophic interactions among plants, herbivores, and their natural enemies, influencing key ecological and evolutionary processes. To fully understand these interactions through the food chain, a well-defined tri-trophic system is required. We investigated microbial dynamics involving plants (beans, cucumbers, and eggplants), spider mites (Tetranychus urticae), and predatory mites (Phytoseiulus persimilis) through 16S rRNA gene sequencing. The results revealed significant variations in microbiota across different trophic levels. Source tracking analysis indicated that microbiota at each trophic level were rarely inherited from the previous one, and deterministic processes played a key role in shaping the endosphere communities of these levels. Most shared zero-radius operational taxonomic units across each trophic level belonged to Pseudomonas, Bacillus, and Staphylococcus. Leaf microbiota differed among plants, while spider mites harbored similar microbiota. Notably, the microbiota of predatory mites on eggplants differed significantly from those on the other two plants. Biomarker selection and correlation analyses revealed that the abundance of Methylobacterium and Stenotrophomonas was strongly correlated with the improved fitness of predatory mites across different plants. Our study highlights the complex and dynamic nature of microbial communities across different trophic levels in a well-defined plant-herbivore-predator system.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms