FEMS microbiology ecology最新文献

筛选
英文 中文
Latitudinal gradients and ocean fronts strongly influence protist communities in the southern Pacific Ocean. 纬度梯度和海洋锋面对南太平洋地区的原生生物群落有很大影响。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-11-23 DOI: 10.1093/femsec/fiae137
Daniela Sturm, Peter Morton, Gerald Langer, William M Balch, Glen Wheeler
{"title":"Latitudinal gradients and ocean fronts strongly influence protist communities in the southern Pacific Ocean.","authors":"Daniela Sturm, Peter Morton, Gerald Langer, William M Balch, Glen Wheeler","doi":"10.1093/femsec/fiae137","DOIUrl":"10.1093/femsec/fiae137","url":null,"abstract":"<p><p>Protist communities in the southern Pacific Ocean make a major contribution to global biogeochemical cycling, but remain understudied due to their remote location. We therefore have limited understanding of how large-scale physical gradients (e.g. temperature) and mesoscale oceanographic features (e.g. fronts) influence microeukaryote diversity in this region. We performed a high-resolution examination of protist communities along a latitudinal transect (>3000 km) at 150°W in the central southern Pacific Ocean that encompassed major frontal regions, including the subtropical front (STF), the subantarctic front (SAF), and the polar front (PF). We identified distinct microbial communities along the transect that were primarily delineated by the positions of the STF and PF. Some taxa were not constricted by these environmental boundaries and were able to span frontal regions, such as the colonial haptophyte Phaeocystis. Our findings also support the presence of a latitudinal diversity gradient (LDG) of decreasing diversity of the protist community with increasing latitude, although some individual taxa, notably the diatoms, do not adhere to this rule. Our findings show that oceanographic features and large-scale physical gradients have important impacts on marine protist communities in the southern Pacific Ocean that are likely to strongly influence their response to future environmental change.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological processes shaping highly connected bacterial communities along strong environmental gradients. 沿着强烈的环境梯度塑造高度关联细菌群落的生态过程。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-11-23 DOI: 10.1093/femsec/fiae146
Wenxue Wu, Chih-Hao Hsieh, Ramiro Logares, Jay T Lennon, Hongbin Liu
{"title":"Ecological processes shaping highly connected bacterial communities along strong environmental gradients.","authors":"Wenxue Wu, Chih-Hao Hsieh, Ramiro Logares, Jay T Lennon, Hongbin Liu","doi":"10.1093/femsec/fiae146","DOIUrl":"10.1093/femsec/fiae146","url":null,"abstract":"<p><p>Along the river-sea continuum, microorganisms are directionally dispersed by water flow while being exposed to strong environmental gradients. To compare the two assembly mechanisms that may strongly and differently influence metacommunity dynamics, namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putatively active (16S rRNA transcript) bacterial communities in the Pearl River-South China Sea Continuum, during the wet (summer) and dry (winter) seasons using high-throughput sequencing. Moreover, well-defined sampling was conducted by including freshwater, oligohaline, mesohaline, polyhaline, and marine habitats. We found that heterogeneous selection exceeded homogenizing dispersal in both the total and active fractions of bacterial communities in two seasons. However, homogeneous selection was prevalent (the dominant except in active bacterial communities during summer), which was primarily due to the bacterial communities' tremendous diversity (associated with high rarity) and our specific sampling design. In either summer or winter seasons, homogeneous and heterogeneous selection showed higher relative importance in total and active communities, respectively, implying that the active bacteria were more responsive to environmental gradients than were the total bacteria. In summary, our findings provide insight into the assembly of bacterial communities in natural ecosystems with high spatial connectivity and environmental heterogeneity.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal shifts and land-use impact: unveiling the gut microbiomes of bank voles (Myodes glareolus) and common voles (Microtus arvalis). 季节变化和土地利用影响:揭示银行田鼠(Myodes glareolus)和普通田鼠(Microtus arvalis)的肠道微生物组。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-11-23 DOI: 10.1093/femsec/fiae159
Lea Kauer, Christian Imholt, Jens Jacob, Christian Berens, Ralph Kühn
{"title":"Seasonal shifts and land-use impact: unveiling the gut microbiomes of bank voles (Myodes glareolus) and common voles (Microtus arvalis).","authors":"Lea Kauer, Christian Imholt, Jens Jacob, Christian Berens, Ralph Kühn","doi":"10.1093/femsec/fiae159","DOIUrl":"10.1093/femsec/fiae159","url":null,"abstract":"<p><p>Gut microbial diversity influences the health and vitality of the host, yet it is itself affected by internal and external factors, including land-use. The impact of land-use practices on wild rodents' gut microbiomes remains understudied, despite their abundance and potential as reservoirs for zoonotic pathogens. We examined the bacterial and fungal gut microbiomes of bank voles (Myodes glareolus) and common voles (Microtus arvalis) across grassland and forest habitats with varying land-use intensities and types. We collected rodents seasonally and used 16S rRNA and ITS amplicon sequencing for microbe identification. We found significant differences in alpha and beta diversities between the species, with M. arvalis exhibiting higher diversity. Seasonality emerged as a prominent factor influencing microbial diversity, with significant variations between sampling months. While land-use affects the gut microbiome, its impact is subordinate to seasonal variations. Differential abundance analysis underscores the dynamic nature of microbial composition, with seasonal changes playing a predominant role. Overall, our findings highlight the significant influence of seasonality on gut microbiome diversity and composition in wild rodents, reflecting dietary shifts associated with seasonal changes. Understanding the interplay between environmental factors and microbial communities in wild rodents enahnces our knowledge of ecosystem health and resilience, warranting further investigation.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How marine are Marine Stramenopiles (MAST)? A cross-system evaluation. 海洋支柱(MAST)的海洋性如何?跨系统评估。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae130
Aleix Obiol, Javier Del Campo, Colomban de Vargas, Frédéric Mahé, Ramon Massana
{"title":"How marine are Marine Stramenopiles (MAST)? A cross-system evaluation.","authors":"Aleix Obiol, Javier Del Campo, Colomban de Vargas, Frédéric Mahé, Ramon Massana","doi":"10.1093/femsec/fiae130","DOIUrl":"10.1093/femsec/fiae130","url":null,"abstract":"<p><p>Marine Stramenopiles (MAST) were first described two decades ago through ribosomal RNA gene (rRNA gene) sequences from marine surveys of microbial eukaryotes. MAST comprise several independent lineages at the base of the Stramenopiles. Despite their prevalence in the ocean, the majority of MAST diversity remains uncultured. Previous studies, mainly in marine environments, have explored MAST's cell morphology, distribution, trophic strategies, and genomics using culturing-independent methods. In comparison, less is known about their presence outside marine habitats. Here, we analyse the extensive EukBank dataset to assess the extent to which MAST can be considered marine protists. Additionally, by incorporating newly available rRNA gene sequences, we update Stramenopiles phylogeny, identifying three novel MAST lineages. Our results indicate that MAST are primarily marine with notable exceptions within MAST-2 and MAST-12, where certain subclades are prevalent in freshwater and soil habitats. In the marine water column, only a few MAST species, particularly within clades -1, -3, -4, and -7, dominate and exhibit clear latitudinal distribution patterns. Overall, the massive sequencing dataset analysed in our study confirms and partially expands the previously described diversity of MASTs groups and underscores the predominantly marine nature of most of these uncultured lineages.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis. 家庭和环境在决定圈养水生蛙皮肤细菌群落中的作用。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae131
Phoebe A Chapman, Daniel Hudson, Xochitl C Morgan, Caroline W Beck
{"title":"The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis.","authors":"Phoebe A Chapman, Daniel Hudson, Xochitl C Morgan, Caroline W Beck","doi":"10.1093/femsec/fiae131","DOIUrl":"10.1093/femsec/fiae131","url":null,"abstract":"<p><p>Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens. 污染梯度塑造了城市社区花园中与白纹伊蚊幼虫栖息地相关的微生物群落。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae129
Penelope Duval, Edwige Martin, Laurent Vallon, Pierre Antonelli, Maxime Girard, Aymeric Signoret, Patricia Luis, Danis Abrouk, Laure Wiest, Aurélie Fildier, Christelle Bonnefoy, Patrick Jame, Erik Bonjour, Amelie Cantarel, Jonathan Gervaix, Emmanuelle Vulliet, Rémy Cazabet, Guillaume Minard, Claire Valiente Moro
{"title":"Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens.","authors":"Penelope Duval, Edwige Martin, Laurent Vallon, Pierre Antonelli, Maxime Girard, Aymeric Signoret, Patricia Luis, Danis Abrouk, Laure Wiest, Aurélie Fildier, Christelle Bonnefoy, Patrick Jame, Erik Bonjour, Amelie Cantarel, Jonathan Gervaix, Emmanuelle Vulliet, Rémy Cazabet, Guillaume Minard, Claire Valiente Moro","doi":"10.1093/femsec/fiae129","DOIUrl":"10.1093/femsec/fiae129","url":null,"abstract":"<p><p>The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial subsurface lithoautotrophic microbial ecosystems and gas storage in deep subsurface. 人工可持续土地退化机制与深层地下的天然气储存。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae142
Anthony Ranchou-Peyruse
{"title":"Artificial subsurface lithoautotrophic microbial ecosystems and gas storage in deep subsurface.","authors":"Anthony Ranchou-Peyruse","doi":"10.1093/femsec/fiae142","DOIUrl":"10.1093/femsec/fiae142","url":null,"abstract":"<p><p>Over the next few years, it is planned to convert all or part of the underground gas storage (UGS) facilities used for natural gas (salt caverns, depleted hydrocarbon reservoirs, and deep aquifers) into underground dihydrogen (H2) storage reservoirs. These deep environments host microbial communities, some of which are hydrogenotrophic (sulfate reducers, acetogens, and methanogens). The current state of microbiological knowledge is thus presented for the three types of UGS facilities. In the mid-1990s, the concept of anaerobic subsurface lithoautotrophic microbial ecosystems, or SLiMEs, emerged. It is expected that the large-scale injection of H2 into subsurface environments will generate new microbial ecosystems called artificial SLiMEs, which could persist over time. These artificial SLiMEs could lead to H2 loss, an intense methanogenic activity, a degradation of gas quality and a risk to installations through sulfide production. However, recent studies on salt caverns and deep aquifers suggest that hydrogenotrophic microbial activity also leads to alkalinization (up to pH 10), which can constrain hydrogenotrophy. Therefore, studying and understanding these artificial SLiMEs is both a necessity for the development of the H2 industry and presents an opportunity for ecologists to monitor the evolution of deep environments in real time.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FEMSEC-thematic issue "Rhizosphere-a One Health concept". FEMSEC 专题 "根瘤菌圈--一个健康概念"。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae136
Anton Hartmann, Luz de Bashan, Birgit Wassermann, Marcus A Horn, Angela Sessitsch
{"title":"FEMSEC-thematic issue \"Rhizosphere-a One Health concept\".","authors":"Anton Hartmann, Luz de Bashan, Birgit Wassermann, Marcus A Horn, Angela Sessitsch","doi":"10.1093/femsec/fiae136","DOIUrl":"10.1093/femsec/fiae136","url":null,"abstract":"","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"100 11","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean. 栖息地特异性改变了南大洋的细菌生物地理格局。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae134
Mélanie Delleuze, Guillaume Schwob, Julieta Orlando, Karin Gerard, Thomas Saucède, Paul Brickle, Elie Poulin, Léa Cabrol
{"title":"Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean.","authors":"Mélanie Delleuze, Guillaume Schwob, Julieta Orlando, Karin Gerard, Thomas Saucède, Paul Brickle, Elie Poulin, Léa Cabrol","doi":"10.1093/femsec/fiae134","DOIUrl":"10.1093/femsec/fiae134","url":null,"abstract":"<p><p>Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. 元条码揭示了奥地利从高山到低地梯度河流和地下水中生态独特的真菌群落。
IF 3.5 3区 生物学
FEMS microbiology ecology Pub Date : 2024-10-25 DOI: 10.1093/femsec/fiae139
Alice Retter, Christian Griebler, R Henrik Nilsson, Johannes Haas, Steffen Birk, Eva Breyer, Federico Baltar, Clemens Karwautz
{"title":"Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient.","authors":"Alice Retter, Christian Griebler, R Henrik Nilsson, Johannes Haas, Steffen Birk, Eva Breyer, Federico Baltar, Clemens Karwautz","doi":"10.1093/femsec/fiae139","DOIUrl":"10.1093/femsec/fiae139","url":null,"abstract":"<p><p>Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信