{"title":"太湖悬浮颗粒物连续体中细菌多样性的粒径依赖性","authors":"Fangwei Fan, Yichen Ren, Zhendu Mao, Biao Li, Chunyan Yu, Jiawei Gao, Yu Gu, Jianing Ding, Huabing Li, Qinglong L Wu","doi":"10.1093/femsec/fiaf038","DOIUrl":null,"url":null,"abstract":"<p><p>Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005152/pdf/","citationCount":"0","resultStr":"{\"title\":\"Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu.\",\"authors\":\"Fangwei Fan, Yichen Ren, Zhendu Mao, Biao Li, Chunyan Yu, Jiawei Gao, Yu Gu, Jianing Ding, Huabing Li, Qinglong L Wu\",\"doi\":\"10.1093/femsec/fiaf038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"101 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005152/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf038\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Particle-size dependent of bacterial diversity associated with suspended particulate matter continuum in Lake Taihu.
Suspended particulate matter (SPM) of varying particle sizes is widespread in aquatic ecosystems, providing crucial habitats for bacteria and serving as hotspots for mineralization and nutrient cycling. However, prior studies have typically treated bacteria associated with these particulates as a homogeneous group, overlooking size-related differences in diversity and composition. In this study, we separated the SPM continuum into five size-fractions (0.2, 2, 20, 200, and 500 µm) and investigated bacterial diversity, community assembly, and environmental drivers across four representative regions of Lake Taihu, China, over 1-year period. Using 16S rRNA gene sequencing, we observed particle-size-dependent variations in bacterial diversity. Alpha diversity decreased significantly with increasing particle size, while beta diversity showed a similar trend. Environmental factors influencing species richness varied by particle size, while bacteria associated with smaller particles (0.2, 2, and 20 µm) were more sensitive to environmental factors compared to those associated with larger ones (200 and 500 µm). The role of deterministic processes in community assembly increased with particle size, indicating stronger selection on larger particles. This study enhances our understanding of bacterial diversity in aquatic ecosystems and highlights the importance of particle size in bacterial community dynamics.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms