André Soares, Sara Maria Edwards Rassner, Arwyn Edwards, Gareth Farr, Nia Blackwell, Henrik Sass, Guglielmo Persiani, David Schofield, Andrew C Mitchell
{"title":"煤基地下水中铁硫循环菌群的水文地质与地质分配。","authors":"André Soares, Sara Maria Edwards Rassner, Arwyn Edwards, Gareth Farr, Nia Blackwell, Henrik Sass, Guglielmo Persiani, David Schofield, Andrew C Mitchell","doi":"10.1093/femsec/fiaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrite oxidation drives iron and sulfur availability across Earth's subsurface and is partly microbially mediated. Subsurface microbial communities accelerate this process at circumneutral pH directly by weathering pyritic surfaces and indirectly by causing changes to the surrounding microenvironment, thereby further accelerating pyrite weathering. However, our understanding of community structure dynamics and associated biogeochemistry in Fe- and S-rich lithologies, e.g. pyritic coal, is limited. Here, we present the first comprehensive regional and seasonal genus-level survey of bacterial groundwater communities in a pyritic coal-based aquifer in the South Wales Coalfield (SWC), using 16S rRNA gene amplicon sequencing. Seasonal changes in community structure were limited, suggesting limited influence of surface processes on subsurface communities. Instead, hydrogeologically distinct mine water blocks (MWB) and coal rank largely explained bacterial community structure variation across sites. Fe(II)-oxidizing Betaproteobacteriales genera Gallionella and Sideroxydans dominated the bacterial communities across nine sites and seven MWBs, while three sites within a single MWB, were dominated by S-oxidizing Epsilonbacteraeota genera Sulfuricurvum and Sulfurovum. The cooccurrence of pairs of Fe(II)- and S-oxidizing bacterial genera suggests functional redundancy, which coupled with genus-specific morphologies and life strategies, indicates the importance of distinct environmental and ecological niches within the SWC groundwater at seasonal and regional scales.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydrogeological and geological partitioning of iron and sulfur cycling bacterial consortia in subsurface coal-based mine waters.\",\"authors\":\"André Soares, Sara Maria Edwards Rassner, Arwyn Edwards, Gareth Farr, Nia Blackwell, Henrik Sass, Guglielmo Persiani, David Schofield, Andrew C Mitchell\",\"doi\":\"10.1093/femsec/fiaf039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyrite oxidation drives iron and sulfur availability across Earth's subsurface and is partly microbially mediated. Subsurface microbial communities accelerate this process at circumneutral pH directly by weathering pyritic surfaces and indirectly by causing changes to the surrounding microenvironment, thereby further accelerating pyrite weathering. However, our understanding of community structure dynamics and associated biogeochemistry in Fe- and S-rich lithologies, e.g. pyritic coal, is limited. Here, we present the first comprehensive regional and seasonal genus-level survey of bacterial groundwater communities in a pyritic coal-based aquifer in the South Wales Coalfield (SWC), using 16S rRNA gene amplicon sequencing. Seasonal changes in community structure were limited, suggesting limited influence of surface processes on subsurface communities. Instead, hydrogeologically distinct mine water blocks (MWB) and coal rank largely explained bacterial community structure variation across sites. Fe(II)-oxidizing Betaproteobacteriales genera Gallionella and Sideroxydans dominated the bacterial communities across nine sites and seven MWBs, while three sites within a single MWB, were dominated by S-oxidizing Epsilonbacteraeota genera Sulfuricurvum and Sulfurovum. The cooccurrence of pairs of Fe(II)- and S-oxidizing bacterial genera suggests functional redundancy, which coupled with genus-specific morphologies and life strategies, indicates the importance of distinct environmental and ecological niches within the SWC groundwater at seasonal and regional scales.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"101 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf039\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf039","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Hydrogeological and geological partitioning of iron and sulfur cycling bacterial consortia in subsurface coal-based mine waters.
Pyrite oxidation drives iron and sulfur availability across Earth's subsurface and is partly microbially mediated. Subsurface microbial communities accelerate this process at circumneutral pH directly by weathering pyritic surfaces and indirectly by causing changes to the surrounding microenvironment, thereby further accelerating pyrite weathering. However, our understanding of community structure dynamics and associated biogeochemistry in Fe- and S-rich lithologies, e.g. pyritic coal, is limited. Here, we present the first comprehensive regional and seasonal genus-level survey of bacterial groundwater communities in a pyritic coal-based aquifer in the South Wales Coalfield (SWC), using 16S rRNA gene amplicon sequencing. Seasonal changes in community structure were limited, suggesting limited influence of surface processes on subsurface communities. Instead, hydrogeologically distinct mine water blocks (MWB) and coal rank largely explained bacterial community structure variation across sites. Fe(II)-oxidizing Betaproteobacteriales genera Gallionella and Sideroxydans dominated the bacterial communities across nine sites and seven MWBs, while three sites within a single MWB, were dominated by S-oxidizing Epsilonbacteraeota genera Sulfuricurvum and Sulfurovum. The cooccurrence of pairs of Fe(II)- and S-oxidizing bacterial genera suggests functional redundancy, which coupled with genus-specific morphologies and life strategies, indicates the importance of distinct environmental and ecological niches within the SWC groundwater at seasonal and regional scales.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms