Liam T Sullivan, Suzanne E Kelly, Alison Ravenscraft, Martha S Hunter
{"title":"Acquisition of an obligate environmental symbiont may be limited in the arboreal environment.","authors":"Liam T Sullivan, Suzanne E Kelly, Alison Ravenscraft, Martha S Hunter","doi":"10.1093/femsec/fiaf045","DOIUrl":null,"url":null,"abstract":"<p><p>Many eukaryotic organisms have environmentally acquired microbial symbionts. In animals, microbes commonly occupy the gut and may supply critical nutrients. The leaf-footed bug, Leptoglossus zonatus (Coreidae), is a true bug that is dependent upon ingestion of the free-living, soilborne bacterium Caballeronia early in development for growth and reproduction. In 2019 and 2020, we tested the ability of second instar L. zonatus to acquire Caballeronia in the canopy of pomegranate trees where L. zonatus are often found. We compared the acquisition rate of Caballeronia in nymphs left to forage for the symbiont to bugs fed Caballeronia in advance. Additionally, we aimed to determine whether the microhabitat of potential symbiont sources influenced acquisition success. We hypothesized that the acquisition rate would be heterogeneous among treatments. In 2019, ∼30% of experimental bugs acquired Caballeronia, compared to 75% of those fed the symbiont. In 2020, only about 4% of experimental bugs acquired any symbiont. The symbiont composition of caged bugs differed, and strain diversity was reduced relative to wild bugs. We concluded that Caballeronia is present in the canopy environment, but nymphs may fail to acquire it in the fragments of habitat represented by caged branches, suggesting a cost to host dependency on environmentally acquired symbionts.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf045","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many eukaryotic organisms have environmentally acquired microbial symbionts. In animals, microbes commonly occupy the gut and may supply critical nutrients. The leaf-footed bug, Leptoglossus zonatus (Coreidae), is a true bug that is dependent upon ingestion of the free-living, soilborne bacterium Caballeronia early in development for growth and reproduction. In 2019 and 2020, we tested the ability of second instar L. zonatus to acquire Caballeronia in the canopy of pomegranate trees where L. zonatus are often found. We compared the acquisition rate of Caballeronia in nymphs left to forage for the symbiont to bugs fed Caballeronia in advance. Additionally, we aimed to determine whether the microhabitat of potential symbiont sources influenced acquisition success. We hypothesized that the acquisition rate would be heterogeneous among treatments. In 2019, ∼30% of experimental bugs acquired Caballeronia, compared to 75% of those fed the symbiont. In 2020, only about 4% of experimental bugs acquired any symbiont. The symbiont composition of caged bugs differed, and strain diversity was reduced relative to wild bugs. We concluded that Caballeronia is present in the canopy environment, but nymphs may fail to acquire it in the fragments of habitat represented by caged branches, suggesting a cost to host dependency on environmentally acquired symbionts.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms