Duke Mathematical Journal最新文献

筛选
英文 中文
EKOR strata for Shimura varieties with parahoric level structure EKOR地层为志村品种,具有旁倾水平构造
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-10-17 DOI: 10.1215/00127094-2021-0047
Xu Shen, Chia-Fu Yu, Chao Zhang
{"title":"EKOR strata for Shimura varieties with parahoric level structure","authors":"Xu Shen, Chia-Fu Yu, Chao Zhang","doi":"10.1215/00127094-2021-0047","DOIUrl":"https://doi.org/10.1215/00127094-2021-0047","url":null,"abstract":"In this paper we study the geometry of reduction modulo $p$ of the Kisin-Pappas integral models for certain Shimura varieties of abelian type with parahoric level structure. We give some direct and geometric constructions for the EKOR strata on these Shimura varieties, using the theories of $G$-zips and mixed characteristic local $mathcal{G}$-Shtukas. We establish several basic properties of these strata, including the smoothness, dimension formula, and closure relation. Moreover, we apply our results to the study of Newton strata and central leaves on these Shimura varieties.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48067322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds Rasmussen不变量的推广及其在某些四流形曲面上的应用
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-10-17 DOI: 10.1215/00127094-2022-0039
Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis
{"title":"A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds","authors":"Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis","doi":"10.1215/00127094-2022-0039","DOIUrl":"https://doi.org/10.1215/00127094-2022-0039","url":null,"abstract":"We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 times S^2$, $S^1 times B^3$, $mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49238342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. 基质血管成分在皮肤伤口愈合过程中通过调节细胞外基质促进成纤维细胞迁移和血管生成。
IF 2.1 1区 数学
Duke Mathematical Journal Pub Date : 2019-10-17 DOI: 10.1186/s13287-019-1415-6
Hongsen Bi, Hui Li, Chen Zhang, Yiqing Mao, Fangfei Nie, Ying Xing, Wuga Sha, Xi Wang, David M Irwin, Huanran Tan
{"title":"Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process.","authors":"Hongsen Bi, Hui Li, Chen Zhang, Yiqing Mao, Fangfei Nie, Ying Xing, Wuga Sha, Xi Wang, David M Irwin, Huanran Tan","doi":"10.1186/s13287-019-1415-6","DOIUrl":"10.1186/s13287-019-1415-6","url":null,"abstract":"<p><strong>Background: </strong>A refractory wound is a typical complication of diabetes and is a common outcome after surgery. Current approaches have difficulty in improving wound healing. Recently, non-expanded stromal vascular fraction (SVF), which is derived from mature fat, has opened up new directions for the treatment of refractory wound healing. The aim of the current study is to systematically investigate the impact of SVF on wound healing, including the rate and characteristics of wound healing, ability of fibroblasts to migrate, and blood transport reconstruction, with a special emphasis on their precise molecular mechanisms.</p><p><strong>Methods: </strong>SVF was isolated by digestion, followed by filtration and centrifugation, and then validated by immunocytochemistry, a MTS proliferation assay and multilineage potential analysis. A wound model was generated by creating 6-mm-diameter wounds, which include a full skin defect, on the backs of streptozocin-induced hyperglycemic mice. SVF or human adipose-derived stem cell (hADSC) suspensions were subcutaneously injected, and the wounds were characterized over a 9-day period by photography and measurements. A scratch test was used to determine whether changes in the migratory ability of fibroblasts occurred after co-culture with hADSCs. Angiogenesis was observed with human umbilical vein endothelial cells. mRNA from fibroblasts, endotheliocyte, and skin tissue were sequenced by high-throughput RNAseq, and differentially expressed genes, and pathways, potentially regulated by SVF or hADSCs were bioinformatically analyzed.</p><p><strong>Results: </strong>Our data show that hADSCs have multiple characteristics of MSC. SVF and hADSCs significantly improved wound healing in hyperglycemic mice. hADSCs improve the migratory ability of fibroblasts and capillary structure formation in HUVECs. SVF promotes wound healing by focusing on angiogenesis and matrix remodeling.</p><p><strong>Conclusions: </strong>Both SVF and hADSCs improve the function of fibroblast and endothelial cells, regulate gene expression, and promote skin healing. Various mechanisms likely are involved, including migration of fibroblasts, tubulogenesis of endothelial cells through regulation of cell adhesion, and cytokine pathways.</p>","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"4 1","pages":"302"},"PeriodicalIF":2.1,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88214322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apolarity, border rank, and multigraded Hilbert scheme Apollarity、边秩和多重等级Hilbert方案
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-10-04 DOI: 10.1215/00127094-2021-0048
Weronika Buczy'nska, Jaroslaw Buczy'nski
{"title":"Apolarity, border rank, and multigraded Hilbert scheme","authors":"Weronika Buczy'nska, Jaroslaw Buczy'nski","doi":"10.1215/00127094-2021-0048","DOIUrl":"https://doi.org/10.1215/00127094-2021-0048","url":null,"abstract":"We introduce an elementary method to study the border rank of polynomials and tensors, analogous to the apolarity lemma. This can be used to describe the border rank of all cases uniformly, including those very special ones that resisted a systematic approach. We also define a border rank version of the variety of sums of powers and analyse how it is useful in studying tensors and polynomials with large symmetries. In particular, it can also be applied to provide lower bounds for the border rank of some very interesting tensors, such as the matrix multiplication tensor. We work in a general setting, where the base variety is not necessarily a Segre or Veronese variety, but an arbitrary smooth toric projective variety. A critical ingredient of our work is an irreducible component of a multigraded Hilbert scheme related to the toric variety in question.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49420759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
On the minimal diameter of closed hyperbolic surfaces 关于闭双曲面的极小直径
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-09-26 DOI: 10.1215/00127094-2020-0083
Thomas Budzinski, N. Curien, Bram Petri
{"title":"On the minimal diameter of closed hyperbolic surfaces","authors":"Thomas Budzinski, N. Curien, Bram Petri","doi":"10.1215/00127094-2020-0083","DOIUrl":"https://doi.org/10.1215/00127094-2020-0083","url":null,"abstract":"We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $log g$ as $g to infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42884800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
The fourth moment of Dirichlet L-functions along a coset and the Weyl bound 沿coset和Weyl界的Dirichlet l函数的第四矩
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-08-27 DOI: 10.1215/00127094-2022-0069
Ian Petrow, M. Young
{"title":"The fourth moment of Dirichlet L-functions along a coset and the Weyl bound","authors":"Ian Petrow, M. Young","doi":"10.1215/00127094-2022-0069","DOIUrl":"https://doi.org/10.1215/00127094-2022-0069","url":null,"abstract":"We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"50 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66769902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
On the remainder term of the Weyl law for congruence subgroups of Chevalley groups Chevalley群的同余子群的Weyl律的余项
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-08-19 DOI: 10.1215/00127094-2020-0094
Tobias Finis, E. Lapid
{"title":"On the remainder term of the Weyl law for congruence subgroups of Chevalley groups","authors":"Tobias Finis, E. Lapid","doi":"10.1215/00127094-2020-0094","DOIUrl":"https://doi.org/10.1215/00127094-2020-0094","url":null,"abstract":"Let $X$ be a locally symmetric space defined by a simple Chevalley group $G$ and a congruence subgroup of $G(mathbb Q)$. In this generality, the Weyl law for $X$ was proved by Lindenstrauss--Venkatesh. In the case where $G$ is simply connected, we sharpen their result by giving a power saving estimate for the remainder term.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44421892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Symmetry in stationary and uniformly rotating solutions of active scalar equations 有源标量方程稳态和均匀旋转解的对称性
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-08-05 DOI: 10.1215/00127094-2021-0002
Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao
{"title":"Symmetry in stationary and uniformly rotating solutions of active scalar equations","authors":"Javier G'omez-Serrano, Jaemin Park, Jia Shi, Yao Yao","doi":"10.1215/00127094-2021-0002","DOIUrl":"https://doi.org/10.1215/00127094-2021-0002","url":null,"abstract":"In this paper, we study the radial symmetry properties of stationary and uniformly-rotating solutions of the 2D Euler and gSQG equations, both in the smooth setting and the patch setting. For the 2D Euler equation, we show that any smooth stationary solution with compactly supported and nonnegative vorticity must be radial, without any assumptions on the connectedness of the support or the level sets. In the patch setting, for the 2D Euler equation we show that every uniformly-rotating patch $D$ with angular velocity $Omega leq 0$ or $Omegageq frac{1}{2}$ must be radial, where both bounds are sharp. For the gSQG equation we obtain a similar symmetry result for $Omegaleq 0$ or $Omegageq Omega_alpha$ (with the bounds being sharp), under the additional assumption that the patch is simply-connected. These results settle several open questions in [T. Hmidi, J. Evol. Equ., 15(4): 801-816, 2015] and [F. de la Hoz, Z. Hassainia, T. Hmidi, and J. Mateu, Anal. PDE, 9(7):1609-1670, 2016] on uniformly-rotating patches. Along the way, we close a question on overdetermined problems for the fractional Laplacian [R. Choksi, R. Neumayer, and I. Topaloglu, Arxiv preprint arXiv:1810.08304, 2018, Remark 1.4], which may be of independent interest. The main new ideas come from a calculus of variations point of view.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47832168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Symplectic homology of convex domains and Clarke’s duality 凸域的辛同调与Clarke对偶
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-07-17 DOI: 10.1215/00127094-2021-0025
Alberto Abbondandolo, Jungsoo Kang
{"title":"Symplectic homology of convex domains and Clarke’s duality","authors":"Alberto Abbondandolo, Jungsoo Kang","doi":"10.1215/00127094-2021-0025","DOIUrl":"https://doi.org/10.1215/00127094-2021-0025","url":null,"abstract":"We prove that the Floer complex that is associated with a convex Hamiltonian function on $mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated with the Fenchel-dual Hamiltonian. This isomorphism preserves the action filtrations. As a corollary, we obtain that the symplectic capacity from the symplectic homology of a convex domain with smooth boundary coincides with the minimal action of closed characteristics on its boundary.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44153306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces 树、通过重心扩展的有理映射的长度谱和Berkovich空间
IF 2.5 1区 数学
Duke Mathematical Journal Pub Date : 2019-07-14 DOI: 10.1215/00127094-2022-0056
Yusheng Luo
{"title":"Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces","authors":"Yusheng Luo","doi":"10.1215/00127094-2022-0056","DOIUrl":"https://doi.org/10.1215/00127094-2022-0056","url":null,"abstract":"In this paper, we study the dynamics of degenerating sequences of rational maps on Riemann sphere $hat{mathbb{C}}$ using $mathbb{R}$-trees. Given a sequence of degenerating rational maps, we give two constructions for limiting dynamics on $mathbb{R}$-trees: one geometric and one algebraic. The geometric construction uses the ultralimit of rescalings of barycentric extensions of rational maps, while the algebraic construction uses the Berkovich space of complexified Robinson's field. We show the two approaches are equivalent. The limiting dynamics on the $mathbb{R}$-tree are analogues to isometric group actions on $mathbb{R}$-trees studied in Kleinian groups and Teichmuller theory. We use the limiting map to classify hyperbolic components of rational maps that admit degeneracies with bounded length spectra (multipliers).","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46194217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信