沿coset和Weyl界的Dirichlet l函数的第四矩

IF 2.3 1区 数学 Q1 MATHEMATICS
Ian Petrow, M. Young
{"title":"沿coset和Weyl界的Dirichlet l函数的第四矩","authors":"Ian Petrow, M. Young","doi":"10.1215/00127094-2022-0069","DOIUrl":null,"url":null,"abstract":"We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"The fourth moment of Dirichlet L-functions along a coset and the Weyl bound\",\"authors\":\"Ian Petrow, M. Young\",\"doi\":\"10.1215/00127094-2022-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0069\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0069","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 35

摘要

证明了导体q$的Dirichlet $L$-函数沿模$d$的子群的余集的四阶矩的Lindelof-on-average上界,当$q^*|d$时,其中$q^*$是最小的正整数,使得$q^2|(q^*)^3$。因此,我们完成了作者之前的工作,并建立了对导体没有限制的所有Dirichlet $L$-函数的weyl强度次凸界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fourth moment of Dirichlet L-functions along a coset and the Weyl bound
We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信