{"title":"沿coset和Weyl界的Dirichlet l函数的第四矩","authors":"Ian Petrow, M. Young","doi":"10.1215/00127094-2022-0069","DOIUrl":null,"url":null,"abstract":"We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"The fourth moment of Dirichlet L-functions along a coset and the Weyl bound\",\"authors\":\"Ian Petrow, M. Young\",\"doi\":\"10.1215/00127094-2022-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0069\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0069","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The fourth moment of Dirichlet L-functions along a coset and the Weyl bound
We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet $L$-functions of conductor $q$ along a coset of the subgroup of characters modulo $d$ when $q^*|d$, where $q^*$ is the least positive integer such that $q^2|(q^*)^3$. As a consequence, we finish the previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet $L$-functions with no restrictions on the conductor.